The interaction of cyanines with nucleic acids is accompanied by intense changes of their optical properties. Consequently these molecules find numerous applications in biology and medicine. Since no detailed information on the binding mechanism of DNA/cyanine systems is available, a T-jump investigation of the kinetics and equilibria of binding of the cyanines Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with CT-DNA is performed at 25 degrees C, pH 7 and various ionic strengths. Bathochromic shifts of the dye absorption band upon DNA addition, polymer melting point displacement (DeltaT = 8-10 degrees C), site size determination (n = 2), and stepwise kinetics concur in suggesting that the investigated cyanines bind to CT-DNA primary by intercalation. Measurements with poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC) reveal fair selectivity of CCyan2 toward G-C basepairs. T-jump experiments show two kinetic effects for both systems. The binding process is discussed in terms of the sequence D + S left arrow over right arrow D,S left arrow over right arrow DS(I) left arrow over right arrow DS(II), which leads first to fast formation of an external complex D,S and then to a partially intercalated complex DS(I) which, in turn, converts to DS(II), a more stable intercalate. Absorption spectra reveal that both dyes tend to self-aggregate; the kinetics of CCyan2 self-aggregation is studied by T-jump relaxation and the results are interpreted in terms of dimer formation.
The role of solvent effects on the thermodynamics and kinetics of the coralyne self-aggregation process has been investigated in ethanol-water mixtures of different compositions. The changes in the UV/visible spectra of coralyne and FAB/LSIMS mass spectrometry agreed well with the formation of a dimer species. 1D and 2D 1H experiments have allowed one to look into the features of the self-aggregation process and to determine the equilibrium constant and the deltaH0 and deltaS0 values for the aggregate formation in 0-50% ethanol-water mixtures. The kinetics of self-aggregation has been investigated by the T-jump chemical relaxation method, and the results have been interpreted in terms of dimer formation. The dependence of the relative viscosity of coralyne solutions on the dye concentration was studied in different ethanol-water mixtures. Finally, it was found that coralyne behaves as a solvatochromic indicator which is preferentially solvated according to the sequence ethanol > ethanol-water > water. All of the results concur in elucidating the relevant role of the hydrophobic interaction process of coralyne stack formation.
Theoretical (ab initio calculations) and experimental (NMR, spectrophotometric, and potentiometric measurements) investigations of the isomers of acetohydroxamic acid (AHA) and their deprotonation processes have been performed. Calculations with the Gaussian 98 package, refined at the MP2(FC)/AUG-cc-pVDZ level considering the molecule isolated, indicate that the Z(cis) amide is the most stable form of the neutral molecule. This species and the less stable (Z)-imide form undergo deprotonation, giving rise to two stable anions. Upon deprotonation, the E(trans) forms give three stable anions. The ab initio calculations were performed in solution as well, regarding water as a continuous dielectric; on the basis of the relative energies of the most stable anion and neutral forms, calculated with MP2/PCM/AUG-cc-pVDZ, N-deprotonation of the amide (Z or E) structure appeared to be the most likely process in solution. NMR measurements provided evidence for the existence of (Z)- and (E)-isomers of both the neutral and anion forms in solution. Comparisons of the dynamic NMR and NOESY (one-dimensional) results obtained for the neutral species and their anions were consistent with N-deprotonation, which occurred preferentially to O-deprotonation. The (microscopic) acid dissociation constants of the two isomers determined at 25 degrees C from the pH dependence of the relevant chemical shifts, pK(E) = 9.01 and pK(Z) = 9.35, were consistent with the spectrophotometric and potentiometric evaluations (pK(HA) = 9.31).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.