Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D) results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.
In this study, the dispersion of reclaimed carbon fibres following cost-effective surface treatment is explored with a hydrodynamic fibre moving model, and a practical fibre dispersion effect is investigated through various physical dispersion methods. To utilise reclaimed carbon fibres for a desired composite product, our proposed low-cost surface treatment is shown to be beneficial to the physical and chemical properties of the reclaimed carbon fibres and to yield polar-hydrophilic characteristics. Single fibre tensile testing is performed to explore the effect of surface treatment on the reclaimed carbon fibres (a higher tensile strength was observed). A computational hydrodynamic fibre moving model based on a moving particle semi-implicit method is newly designed to perform hydrodynamic simulation to determine aqueous dispersion of discontinuous reclaimed carbon fibres. This simulation helps understanding fibre flocculation phenomena from the perspective of fibre stiffness, which should not be disregarded for the fibre dispersion. Fibre surface analyses including morphology and functional groups are carried out to investigate the effect of surface treatment. The hydrodynamic simulation and proposed fibre dispersion methods with a cost-effective surface treatment approach can be widely applicable to any type of reclaimed carbon fibres to produce recycled fibre reinforced polymer composite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.