Physical exercise potentiates the carotid chemoreflex control of ventilation (VE). Hyperadditive neural interactions may partially mediate the potentiation. However, some neural interactions remain incompletely explored. As the potentiation occurs even during low-intensity exercise, we tested the hypothesis that the carotid chemoreflex and the muscle mechanoreflex could interact in a hyperadditive fashion. Fourteen young healthy subjects inhaled randomly, in separate visits, 12% O to stimulate the carotid chemoreflex and 21% O as control. A rebreathing circuit maintained isocapnia. During gases administration, subjects either remained at rest (i.e., normoxic and hypoxic rest) or the muscle mechanoreflex was stimulated via passive knee movement (i.e., normoxic and hypoxic movement). Surface muscle electrical activity did not increase during the passive movement, confirming the absence of active contractions. Hypoxic rest and normoxic movement similarly increased VE [change (mean ± SE) = 1.24 ± 0.72 vs. 0.73 ± 0.43 l/min, respectively; P = 0.46], but hypoxic rest only increased tidal volume (Vt), and normoxic movement only increased breathing frequency (BF). Hypoxic movement induced greater VE and mean inspiratory flow (Vt/Ti) increase than the sum of hypoxic rest and normoxic movement isolated responses (VE change: hypoxic movement = 3.72 ± 0.81 l/min vs. sum = 1.96 ± 0.83 l/min, P = 0.01; Vt/Ti change: hypoxic movement = 0.13 ± 0.03 l/s vs. sum = 0.06 ± 0.03 l/s, P = 0.02). Moreover, hypoxic movement increased both Vt and BF. Collectively, the results indicate that the carotid chemoreflex and the muscle mechanoreflex interacted, mediating a hyperadditive ventilatory response in healthy humans. NEW & NOTEWORTHY The main finding of this study was that concomitant carotid chemoreflex and muscle mechanoreflex stimulation provoked greater ventilation increase than the sum of ventilation increase induced by stimulation of each reflex in isolation, which, consequently, supports that the carotid chemoreflex and the muscle mechanoreflex interacted, mediating a hyperadditive ventilatory response in healthy humans.
The results suggest that WI accelerates the postexercise parasympathetic reactivation after high-intensity exercise. Such outcome reveals an important cardioprotective effect of WI.
The prevailing view is that exertional dyspnoea in patients with combined idiopathic pulmonary fibrosis (IPF) and emphysema (CPFE) can be largely explained by severe hypoxaemia. However, there is little evidence to support these assumptions.We prospectively contrasted the sensory and physiological responses to exercise in 42 CPFE and 16 IPF patients matched by the severity of exertional hypoxaemia. Emphysema and pulmonary fibrosis were quantified using computed tomography. Inspiratory constraints were assessed in a constant work rate test: capillary blood gases were obtained in a subset of patients.CPFE patients had lower exercise capacity despite less extensive fibrosis compared to IPF (p=0.004 and 0.02, respectively). Exertional dyspnoea was the key limiting symptom in 24 CPFE patients who showed significantly lower transfer factor, arterial carbon dioxide tension and ventilatory efficiency (higher minute ventilation (V′E)/carbon dioxide output (V′CO2) ratio) compared to those with less dyspnoea. However, there were no between-group differences in the likelihood of pulmonary hypertension by echocardiography (p=0.44). High dead space/tidal volume ratio, low capillary carbon dioxide tension emphysema severity (including admixed emphysema) and traction bronchiectasis were related to a high V′E/V′CO2 ratio in the more dyspnoeic group. V′E/V′CO2 nadir >50 (OR 9.43, 95% CI 5.28–13.6; p=0.0001) and total emphysema extent >15% (2.25, 1.28–3.54; p=0.01) predicted a high dyspnoea burden associated with severely reduced exercise capacity in CPFEContrary to current understanding, hypoxaemia per se is not the main determinant of exertional dyspnoea in CPFE. Poor ventilatory efficiency due to increased “wasted” ventilation in emphysematous areas and hyperventilation holds a key mechanistic role that deserves therapeutic attention.
Key pointsr Dysfunction of post-exercise cardiac autonomic control is associated with increased mortality risk in healthy adults and in patients with cardiorespiratory diseases.r The afferent mechanisms that regulate the post-exercise cardiac autonomic control remain unclear.r We found that afferent signals from carotid chemoreceptors restrain the post-exercise cardiac autonomic control in healthy adults and patients with pulmonary arterial hypertension (PAH).r Patients with PAH had higher carotid chemoreflex sensitivity, and the magnitude of carotid chemoreceptor restraint of autonomic control was greater in patients with PAH as compared to healthy adults.r The results demonstrate that the carotid chemoreceptors contribute to the regulation of post-exercise cardiac autonomic control, and suggest that the carotid chemoreceptors may be a potential target to treat post-exercise cardiac autonomic dysfunction in patients with PAH.Abstract Dysfunction of post-exercise cardiac autonomic control predicts mortality, but its underlying mechanisms remain unclear. We tested whether carotid chemoreflex activity restrains post-exercise cardiac autonomic control in healthy adults (HA), and whether such restraint is greater in patients with pulmonary arterial hypertension (PAH) who may have both altered carotid chemoreflex and altered post-exercise cardiac autonomic control. Twenty non-hypoxaemic patients with PAH and 13 age-and sex-matched HA pedalled until 90% of peak work rate observed in a symptom-limited ramp-incremental exercise test. Recovery consisted of unloaded pedalling for 5 min followed by seated rest for 6 min. During recovery, subjects randomly inhaled either 100% O 2 (hyperoxia) to inhibit the carotid chemoreceptor activity, or 21% O 2 (normoxia) as control. Post-exercise cardiac autonomic control was examined via heart rate (HR) recovery (HRR; HR change after 30, 60, 120 and 300 s of recovery, using linear and non-linear regressions of HR decay) and HR variability (HRV; time and spectral domain analyses). As expected, the PAH group had higher carotid chemosensitivity and worse post-exercise HRR and HRV than HA. Hyperoxia increased HRR at 30, 60 and 120 s and absolute spectral power HRV in both groups.Additionally, hyperoxia resulted in an accelerated linear HR decay and increased time domain HRV during active recovery only in the PAH group. In conclusion, the carotid chemoreceptors restrained recovery of cardiac autonomic control from exercise in HA and in patients with PAH, with the restraint greater for some autonomic indexes in patients with PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.