The complex macrolide cruentaren A is a highly selective and potent inhibitor of F-ATPase (F-type adenosine triphosphatase). As it shows some resemblance to benzolactone enamides like apicularen A, it was of interest to perform some structure-activity studies to delineate the key functional groups that are responsible for the activity. Building upon our previously developed route to cruentaren A, which is based on a ring-closing alkyne metathesis reaction (RCAM), several cruentaren analogues were prepared. Replacement of the 3-hydroxy hexanoic part with acids that lack the hydroxy group function resulted in a significant drop in cytotoxicity and F-ATPase inhibition. Furthermore, two enamide analogues 23 and 50 were synthesized. However, these compounds were only cytotoxic in the micromolar range. Under the conditions for cleavage of the C3 aromatic methyl ether, the enamide function was transformed to the corresponding oxazinanone, resulting in analogues 25 and 52.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.