The first rate-limiting step to successfully translate prevention of psychosis in to clinical practice is to establish specialised Clinical High Risk for Psychosis (CHR-P) services. This study systematises the knowledge regarding CHR-P services and provides guidelines for translational implementation. We conducted a PRISMA/MOOSE-compliant (PROSPERO-CRD42020163640) systematic review of Web of Science to identify studies until 4/05/2020 reporting on CHR-P service configuration, outreach strategy and referrals, service user characteristics, interventions, and outcomes. Fifty-six studies (1998–2020) were included, encompassing 51 distinct CHR-P services across 15 countries and a catchment area of 17,252,666 people. Most services (80.4%) consisted of integrated multidisciplinary teams taking care of CHR-P and other patients. Outreach encompassed active (up to 97.6%) or passive (up to 63.4%) approaches: referrals came mostly (90%) from healthcare agencies. CHR-P individuals were more frequently males (57.2%). Most (70.6%) services accepted individuals aged 12–35 years, typically assessed with the CAARMS/SIPS (83.7%). Baseline comorbid mental conditions were reported in two-third (69.5%) of cases, and unemployment in one third (36.6%). Most services provided up to 2-years (72.4%), of clinical monitoring (100%), psychoeducation (81.1%), psychosocial support (73%), family interventions (73%), individual (67.6%) and group (18.9%) psychotherapy, physical health interventions (37.8%), antipsychotics (87.1%), antidepressants (74.2%), anxiolytics (51.6%), and mood stabilisers (38.7%). Outcomes were more frequently ascertained clinically (93.0%) and included: persistence of symptoms/comorbidities (67.4%), transition to psychosis (53.5%), and functional status (48.8%). We provide ten practical recommendations for implementation of CHR-P services. Health service knowledge summarised by the current study will facilitate translational efforts for implementation of CHR-P services worldwide.
Purpose of Review This review will cover the most relevant findings on the use of machine learning (ML) techniques in the field of non-affective psychosis, by summarizing the studies published in the last three years focusing on illness detection and treatment. Recent Findings Multiple ML tools that include mostly supervised approaches such as support vector machine, gradient boosting, and random forest showed promising results by applying these algorithms to various sources of data: socio-demographic information, EEG, language, digital content, blood biomarkers, neuroimaging, and electronic health records. However, the overall performance, in the binary classification case, varied from 0.49, which is to be considered very low (i.e., noise), to over 0.90. These results are fully justified by different factors, some of which may be attributable to the preprocessing of the data, the wide variety of the data, and the a-priori setting of hyperparameters. One of the main limitations of the field is the lack of stratification of results based on biological sex, given that psychosis presents differently in men and women; hence, the necessity to tailor identification tools and data analytic strategies. Summary Timely identification and appropriate treatment are key factors in reducing the consequences of psychotic disorders. In recent years, the emergence of new analytical tools based on artificial intelligence such as supervised ML approaches showed promises as a potential breakthrough in this field. However, ML applications in everyday practice are still in its infancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.