Objective: Primary hyperparathyroidism (PHPT) is often complicated by kidney stones. Hypercalciuria and urine oxalate excretion are considered risk factors for urolithiasis in PHPT as well as in idiopathic stone-formers. Recently, the anion-exchanger SLC26A6 has been involved in the oxalate metabolism.Design and methods: We tested the hypothesis that the 206M polymorphic variant of SLC26A6 gene might contribute to the risk of kidney stones in PHPT. DNA samples from 145 PHPT patients and 129 age-and sex-matched healthy subjects were genotyped. Results: The homozygous 206V genotype was the most frequent both in PHPT patients and controls (79.3 and 74.4%), while heterozygosity for the 206M allele was detected in 20.0 and 23.3% respectively. The homozygous 206M genotype was extremely rare, occurring in 0.7 and 2.3% of PHPT and healthy subjects respectively. In the PHPT cohort, the prevalence of urolithiasis did not differ between the V/V and V/MCM/M groups and urine oxalate excretions did not correlate with the genotype. Considering the subset of PHPT stone formers (nZ74), calciuria was lower in V/MCM/M patients with respect to V/V stone-formers (4.40G1.88 vs 5.92G2.62 mg/kg per 24 h; meanGS.D., PZ0.034). Finally, the SLC26A6 206M alleles were significantly related to the presence of hypertension (73.3 vs 47.8%), showing an OR of 4.8. Conclusions: Though the SLC26A6 206M polymorphism did not correlate with kidney stone development in PHPT patients, PHPT stone-formers harbouring the M allele had a lower hypercalciuria. This observation and the high prevalence of hypertension associated with the 206M polymorphism need further investigation.
CHD patients have an increased risk for both CH (10-fold higher) and acquired mild hypothyroidism (3-fold higher). Unrecognized mild hypothyroidism may negatively affect the outcome of CHD children, suggesting that thyroid function should be repeatedly checked. Thyroid autoimmunity and 22q11.2 microdeletions account for small percentages of these cases, and still unknown mechanisms underline such a strong association.
Background22q11.2 microdeletion is responsible for the DiGeorge Syndrome, characterized by heart defects, psychiatric disorders, endocrine and immune alterations and a 1 in 4000 live birth prevalence. Real-time quantitative PCR (qPCR) approaches for allelic copy number determination have recently been investigated in 22q11.2 microdeletions detection. The qPCR method was performed for 22q11.2 microdeletions detection as a first-level screening approach in a genetically unknown series of patients with congenital heart defects. A technical issue related to the VPREB1 qPCR marker was pointed out.MethodsA set of 100 unrelated Italian patients with congenital heart defects were tested for 22q11.2 microdeletions by a qPCR method using six different markers. Fluorescence In Situ Hybridization technique (FISH) was used for confirmation.ResultsqPCR identified six patients harbouring the 22q11.2 microdeletion, confirmed by FISH. The VPREB1 gene marker presented with a pattern consistent with hemideletion in one 3 Mb deleted patient, suggestive for a long distal deletion, and in additional five non-deleted patients. The long distal 22q11.2 deletion was not confirmed by Comparative Genomic Hybridization. Indeed, the VPREB1 gene marker generated false positive results in association with the rs1320 G/A SNP, a polymorphism localized within the VPREB1 marker reverse primer sequence. Patients heterozygous for rs1320 SNP, showed a qPCR profile consistent with the presence of a hemideletion.ConclusionsThough the qPCR technique showed advantages as a screening approach in terms of cost and time, the VPREB1 marker case revealed that single nucleotide polymorphisms can interfere with qPCR data generating erroneous allelic copy number interpretations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.