Advances in experimental and computational methodologies have led to a recent renewed interest in the Hofmeister series and its molecular origins. New results are surveyed and assessed. Insights into the underlying mechanisms have been gained, although deeper molecular understanding still seems to be elusive. The principal reason appears to be that the Hofmeister series emerges from a combination of a general effect of cosolutes (salts, etc.) on solvent structure, and of specific interactions between the cosolutes and the solute (protein or other biopolymer). Hence every system needs to be studied individually in detail, a state of affairs which is likely to continue for some time. A deeper understanding of the Hofmeister series can be an extraordinarily valuable guide to designing experiments, including not only those probing the series per se, but also those designed to elucidate the adsorption, aggregation and stabilization phenomena which underlie so many biological events. The aim of this review is to provide an up-to-date framework to guide such understanding, consolidating recent advances in the many fields on which the Hofmeister series impinges.
We report adhesion, growth, and differentiation of mouse neural cells on ultra‐thin films of an organic semiconductor, pentacene. We demonstrate that i) pentacene is structurally and morphologically stable upon prolonged contact with water, physiological buffer, and cell culture medium; ii) neural stem cells adhere to pentacene and remain viable on it for at least 15 days; iii) densely interconnected neural networks and glial cells develop on the pentacene surface after several days. This implies that adhesion proteins secreted by the cells find suitable adsorption loci to anchor the cells. Pentacene is also a suitable substrate for casting thin layers of cell adhesion molecules, such as laminin and poly‐L‐lysine. Our results show that pentacene, albeit being an aromatic molecule, allows neurons to adhere to and grow on it, which is possibly due to its tightly packed solid state structure. This structure remains unaltered upon exposure to water and interfacial force exerted by the cells. The integration of living cells into organic semiconductors is an important step towards the development of bio‐organic electronic transducers of cellular signals from neural networks.
A phenomenological theory of salt-induced Hofmeister phenomena is presented, based on a relation between protein solubility in salt solutions and protein-water interfacial tension. As a generalization of previous treatments, it implies that both kosmotropic salting out and chaotropic salting in are manifested via salt-induced changes of the hydrophobic/hydrophilic properties of protein-water interfaces. The theory is applied to describe the salt-dependent free energy profiles of proteins as a function of their water-exposed surface area. On this basis, three classes of protein conformations have been distinguished, and their existence experimentally demonstrated using the examples of bacteriorhodopsin and myoglobin. The experimental results support the ability of the new formalism to account for the diverse manifestations of salt effects on protein conformation, dynamics, and stability, and to resolve the puzzle of chaotropes stabilizing certain proteins (and other anomalies). It is also shown that the relation between interfacial tension and protein structural stability is straightforwardly linked to protein conformational fluctuations, providing a keystone for the microscopic interpretation of Hofmeister effects. Implications of the results concerning the use of Hofmeister effects in the experimental study of protein function are discussed.
DNA deposits with submicrometer features can be prepared by micromolding in capillaries on a mica plate (see picture). Upon evaporation, surface properties of the DNA solution and the support come to the fore. The morphology of the DNA deposit can be controlled simply by adjusting the concentrations of the DNA solution and added salt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.