Locked-in Amyotrophic Lateral Sclerosis (ALS) patients are fully dependent on caregivers for any daily need. At this stage, basic communication and environmental control may not be possible even with commonly used augmentative and alternative communication devices. Brain Computer Interface (BCI) technology allows users to modulate brain activity for communication and control of machines and devices, without requiring a motor control. In the last several years, numerous articles have described how persons with ALS could effectively use BCIs for different goals, usually spelling. In the present study, locked-in ALS patients used a BCI system to directly control the humanoid robot NAO (Aldebaran Robotics, France) with the aim of reaching and grasping a glass of water. Four ALS patients and four healthy controls were recruited and trained to operate this humanoid robot through a P300-based BCI. A few minutes training was sufficient to efficiently operate the system in different environments. Three out of the four ALS patients and all controls successfully performed the task with a high level of accuracy. These results suggest that BCI-operated robots can be used by locked-in ALS patients as an artificial alter-ego, the machine being able to move, speak and act in his/her place.
Locked-in Amyotrophic Lateral Sclerosis (ALS) patients are fully dependent on caregivers for any daily need. At this stage, basic communication and environmental control may not be possible even with commonly used augmentative and alternative communication devices. Brain Computer Interface (BCI) technology allows users to modulate brain activity for communication and control of machines and devices, without requiring a motor control. In the last several years, numerous articles have described how persons with ALS could effectively use BCIs for different goals, usually spelling. In the present study, locked-in ALS patients used a BCI system to directly control the humanoid robot NAO (Aldebaran Robotics, France) with the aim of reaching and grasping a glass of water. Four ALS patients and four healthy controls were recruited and trained to operate this humanoid robot through a P300-based BCI. A few minutes training was sufficient to efficiently operate the system in different environments. Three out of the four ALS patients and all controls successfully performed the task with a high level of accuracy. These results suggest that BCI-operated robots can be used by locked-in ALS patients as an artificial alter-ego, the machine being able to move, speak and act in his/her place.
This paper illustrates a new architecture for a human-humanoid interaction based on EEG-brain computer interface (EEG-BCI) for patients affected by locked-in syndrome caused by Amyotrophic Lateral Sclerosis (ALS). The proposed architecture is able to recognise users' mental state accordingly to the biofeedback factor , based on users' attention, intention, and focus, that is used to elicit a robot to perform customised behaviours. Experiments have been conducted with a population of eight subjects: four ALS patients in a near locked-in status with normal ocular movement and four healthy control subjects enrolled for age, education, and computer expertise. The results showed as three ALS patients have completed the task with 96.67% success; the healthy controls with 100% success; the fourth ALS has been excluded from the results for his low general attention during the task; the analysis of factor highlights as ALS subjects have shown stronger (81.20%) than healthy controls (76.77%). Finally, a post-hoc analysis is provided to show how robotic feedback helps in maintaining focus on expected task. These preliminary data suggest that ALS patients could successfully control a humanoid robot through a BCI architecture, potentially enabling them to conduct some everyday tasks and extend their presence in the environment.
The present paper aims to validate our research on human–humanoid interaction (HHI) using the minimalist humanoid robot Telenoid. We conducted the human–robot interaction test with 142 young people who had no prior interaction experience with this robot. The main goal is the analysis of the two social dimensions (“Perception” and “Believability”) useful for increasing the natural behaviour between users and Telenoid. We administered our custom questionnaire to human subjects in association with a well defined experimental setting (“ordinary and goal-guided task”). A thorough analysis of the questionnaires has been carried out and reliability and internal consistency in correlation between the multiple items has been calculated. Our experimental results show that the perceptual behaviour and believability, as implicit social competences, could improve the meaningfulness and the natural-like sense of human–humanoid interaction in everyday life task-driven activities. Telenoid is perceived as an autonomous cooperative agent for a shared environment by human being
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.