Mortality from collision with vehicles is the most visible impact of road traffic on wildlife. Mortality due to roads (hereafter road-kill) can affect the dynamic of populations of many species and can, therefore, increase the risk of local decline or extinction. This is especially true in Brazil, where plans for road network upgrading and expansion overlaps biodiversity hotspot areas, which are of high importance for global conservation. Researchers, conservationists and road planners face the challenge to define a national strategy for road mitigation and wildlife conservation. The main goal of this dataset is a compilation of geo-referenced road-kill data from published and unpublished road surveys. This is the first Data Paper in the BRAZIL series (see ATLANTIC, NEOTROPICAL, and BRAZIL collections of Data Papers published in Ecology), which aims make public road-kill data for species in the Brazilian Regions. The dataset encompasses road-kill records from 45 personal communications and 26 studies published in peer-reviewed journals, theses and reports. The road-kill dataset comprises 21,512 records, 83% of which are identified to the species level (n = 450 species). The dataset includes records of 31 amphibian species, 90 reptile species, 229 bird species, and 99 mammal species. One species is classified as Endangered, eight as Vulnerable and twelve as Near Threatened. The species with the highest number of records are: Didelphis albiventris (n = 1,549), Volatinia jacarina (n = 1,238), Cerdocyon thous (n = 1,135), Helicops infrataeniatus (n = 802), and Rhinella icterica (n = 692). Most of the records came from southern Brazil. However, observations of the road-kill incidence for non-Least Concern species are more spread across the country. This dataset can be used to identify which taxa seems to be vulnerable to traffic, analyze temporal and spatial patterns of road-kill at local, regional and national scales and also used to understand the effects of road-kill on population persistence. It may also contribute to studies that aims to understand the influence of landscape and environmental influences on road-kills, improve our knowledge on road-related strategies on biodiversity conservation and be used as complementary information on large-scale and macroecological studies. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper.
Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal‐central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation‐related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data.
The most studied impact on road ecology is roadkill, however, there is little information about the relations between highways and specific groups like bats. This study intended to identify the species of bats roadkilled and to evaluate the existence of temporal fluctuation between the roadkill rates, specific stretches of the road with higher rates, and characteristics of the road/landscape that may influence those rates. We encountered at least nine bat species among 65 roadkills (most Phyllostomidae), which comprise a subgroup of the local fauna that presents ecologic features that make them susceptible to being hit, especially Artibeus lituratus. The medium roadkill rate was of 0.01 individuals/km/day of monitoring, and there was no significant temporal variation. We identified five hotspots through special 2D HotSpot Identification Analysis. The selection of theoretical models through Generalized Linear Models showed that roadkill occurrence has a positive relation with vehicular traffic and negative relation with presence of marginal pasture and forests. As the major part of records was of species that are tolerant to human-disturbances, the increase in traffic consequently affected a higher number of bats capable to explore the area occupied by the road. The presence of native forest close to the road can lead to a decrease of animals hit by vehicles, once it offers more resources and favorable habitats, which reduces the need for bats to cross the roads for foraging. On the other hand, many species that necessarily depend on areas sheltered by trees for shelter, and do not possess the ability to fly long distances do not occur in open areas such as pastures. In this context, we suggest that the main measure of mitigation regard bat species would be the traffic control through speed limit, especially on the roadkill hotspots areas.
Brazil is known as a high biodiversity country, but at the same time, it has an extensive road network that threatens its wildlife and ecosystems. The impacts of roads and railways on vertebrates have been documented extensively, and the discussion concerning the implementation of mitigation measures for terrestrial wildlife has increased in the last decade. Arboreal animals are especially affected by the direct loss of individuals due to animal-vehicle collisions and by the barrier effect, because most arboreal species, especially the strictly arboreal ones, avoid going down to the ground to move across the landscape. Here we summarize and review information on existing canopy bridges across Brazil, considering artificial and natural canopy bridge initiatives implemented mainly on road and railway projects. A total of 151 canopy bridges were identified across the country, 112 of which are human-made structures of different materials, while the remaining 39 are natural canopy bridges. We found canopy bridges in three of the six biomes, with higher numbers in the Atlantic Forest and Amazon, the most forested biomes. Most of the canopy bridges are in protected areas (76%) and primates are the most common target taxa for canopy bridge implementation. Our study is the first biogeographic mapping and review of canopy bridges for arboreal wildlife conservation in a megadiverse country. We synthesize the available knowledge concerning canopy bridges in Brazil and highlight gaps that should be addressed by future research and monitoring projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.