Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins of the peroxisomal membrane and matrix, respectively. Ypl112p, renamed Pex25p, is a novel peroxin required for the regulation of peroxisome size and maintenance. These studies demonstrate the utility of comparative gene profiling as an alternative to functional assays to identify genes with roles in peroxisome biogenesis.
Abstract. We have taken a combined genetic and biochemical approach to identify major constituents of the yeast nuclear pore complex (NPC). A synthetic lethal screen was used to identify proteins which interact genetically with the major pore-membrane protein Pom152p. In parallel, polypeptides present in similar amounts to Pom152p in a highly enriched preparation of yeast NPCs have been characterized by direct microsequencing. These approaches have led to the identification of two novel and major nucleoporins, Nupl70p and Nup157p. Both Nupl70p and Nup157p are similar to each other and to an abundant mammalian nucleoporin, Nup155p (Radu, A., G. Blobel, and R. W. Wozniak. 1993. J. Cell Biol. 121: 1-9) and interestingly, nup170 mutants can be complemented with mammalian NUP155. In addition, the synthetic lethal screen identified genetic interactions between Pom152p and two other major nucleoporins, Nup188p (Nehrbass, U., S. Maguire, M. Rout, G. Blobel, and R. W. Wozniak, manuscript submitted for publication), and Nic96p (Grandi, P., V. Doye, and E. C. Hurt. 1993.EMBO J. 12: 3061-71). We have determined that together, Nup170p, Nup157p, Pom152p, Nup188p, and Nic96p comprise greater than one-fifth of the mass of the isolated yeast NPC. Examination of the genetic interactions between these proteins indicate that while deletion of either POM152, NUP170, or NUP188 alone is not lethal, pairwise combinations are. Deletion of NUP157 is also not lethal. However, nup157 null mutants, while lethal in combination with nup170 and nup188 null alleles, are not synthetically lethal with pom152 null alleles. We suggest that Nupl70p and Nup157p may be part of a morphologically symmetrical but functionally distinct substructure of the yeast NPC, e.g., the nucleoplasmic and cytoplasmic rings. Finally, we observed morphological abnormalities in the nuclear envelope as a function of alterations in the expression levels of NUP170 suggesting a specific stoichiometric relationship between NPC components is required for the maintenance of normal nuclear structure. COMMUNICATION between the cytoplasm and the nucleoplasm is controlled by nuclear pore complexes (NPCs) 1 which extend across the nuclear envelope (NE) at circular openings along the surface of the nucleus. The NPCs are tightly associated with the NE via the pore membrane domain, a specialized subdomain of the NE which lines the pore and connects the outer and inner nuclear membranes. A major function of the NPC is to regulate the bidirectional transport of proteins and ribonuAddress correspondence to Richard W. Wozniak, Department of Anatomy and Cell Biology, 5-14 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2A7. Ph.: 403-492-1384. Fax: 403-492-0450. e-mail: rwozniak@anat.med.ualberta.ca. Abbreviations used in this paper:ORF, open reading frame; NE, nuclear envelope; NPC, nuclear pore complex; nups, nucleoporins; poms, pore membrane proteins; SM, synthetic minimal medium.cleoproteins between the cytoplasm and the nucleoplasm. The mechanism of mac...
We have identified a specific karyopherin docking complex within the yeast nuclear pore complex (NPC) that contains two novel, structurally related nucleoporins, Nup53p and Nup59p, and the NPC core protein Nup170p. This complex was affinity purified from cells expressing a functional Nup53p–protein A chimera. The localization of Nup53p, Nup59p, and Nup170p within the NPC by immunoelectron microscopy suggests that the Nup53p-containing complex is positioned on both the cytoplasmic and nucleoplasmic faces of the NPC core. In association with the isolated complex, we have also identified the nuclear transport factor Kap121p (Pse1p). Using in vitro binding assays, we showed that each of the nucleoporins interacts with one another. However, the association of Kap121p with the complex is mediated by its interaction with Nup53p. Moreover, Kap121p is the only β-type karyopherin that binds Nup53p suggesting that Nup53p acts as a specific Kap121p docking site. Kap121p can be released from Nup53p by the GTP bound form of the small GTPase Ran. The physiological relevance of the interaction between Nup53p and Kap121p was further underscored by the observation that NUP53 mutations alter the subcellular distribution of Kap121p and the Kap121p- mediated import of a ribosomal L25 reporter protein. Interestingly, Nup53p is specifically phosphorylated during mitosis. This phenomenon is correlated with a transient decrease in perinuclear-associated Kap121p.
We examined the utility of gas-phase fractionation (GPF) in the m/z dimension to increase proteome coverage and reproducibility of peptide ion selection by direct microliquid chromatography/electrospray ionization-tandem mass spectrometry (microLC/ESI-MS/MS) analysis of the peptides produced by proteolytic digestion of unfractionated proteins from a yeast whole-cell lysate and in a peroxisomal membrane protein fraction derived from isolated yeast peroxisomes. We also investigated GPF in the relative ion intensity dimension and propose denoting the two types of GPF as GPF(m/z) and GPF(RI). Comparison of results of direct nuLC/ESI-MS/MS analysis of the unfractionated mixture of peptides from proteolysis of a yeast whole cell lysate by DD ion selection from 400-1800 m/z in triplicate and GPF(m/z) from 400-800, 800-1200 and 1200-1800 produced the following results: (i) 1.3 x more proteins were identified by GPF(m/z) for an equal amount of effort (i.e., 3 microLC/ESI-MS/MS) and (ii) proteins identified by GPF(m/z) had a lower average codon bias value. Use of GPF(RI) identified more proteins per m/z unit scanned than GPF(m/z) or triplicate analysis over a wide m/z range. After tryptic digestion of all the proteins from a discontinuous Nycodenz gradient fraction known to be enriched with yeast peroxisomal membrane proteins we detected 93% (38/41) of known peroxisomal proteins using GPF(m/z), but only 73% using a standard wide m/z range survey scan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.