We used a multidisciplinary approach to infer the taxonomy and historical biogeography of Hierophis viridiflavus and H. gemonensis, performing molecular analyses of itochondrial (16S, Cyt-b, ND4) and nuclear markers (PRLR), a landmark-based morphometric study and a cytogenetic
analysis. Our data distinguished three main groups in the studied species, corresponding to H. gemonensis and to two monophyletic clades (E and W) within H. viridiflavus. Clades E and W display a significant genetic (about 4% for Cyt-b and ND4) and morphological divergence and a different morphology of the W sex chromosome (submetacentric in clade E and telocentric in clade W). Taking into account the existing divergence, these clades appear to represent independent phylogenetic units, deserving elevation to species status. Specific
names should be H. viridiflavus (Lacepede, 1789) and H. carbonarius (Bonaparte 1833) for cladesWand E, respectively. The phylogeography of the studied species is only partially concordant with a general pattern of ‘southern richness and northern purity’ of genetic diversity, whereas H. gemonensis exhibits high genetic diversity at low latitudes (especially in the Peloponnese),
H. carbonarius shows a number of different haplotypes both at low (along the Southern Italian Apennines and in Sicily) and high latitudes in Italy. Furthermore, a relaxed clock model hypothesizes the differentiation between H. gemonensis and H. viridiflavus sensu lato at
about 7 Mya, in the Messinian. Subsequently, the speciation involving H. viridiflavus sensu
stricto and H. carbonarius took place in the Quaternary, probably as a result of Pleistocene climatic
oscillations. Furthermore, our results are consistent with the existence of several ‘refugia within refugia’ in Italy and in the Balkans and depict the major cladogenesis as allopatric events, mainly driven by paleoclimatic and geographical factors
Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach.
In this first cytogenetic survey on the lamprophiid snake subfamily Pseudoxyrhophiinae, we studied the karyology of ten snake species belonging to seven genera from Madagascar (Compsophis, Leioheterodon, Liophidium, Lycodryas, Madagascarophis, Phisalixella and Thamnosophis) using standard and banding methods. Our results show a wide range of different karyotypes ranging from 2n = 34 to 2n = 46 elements (FN from 40 to 48), with nucleolus organizer regions (NORs) on one (plesiomorphic) or two (derived/apomorphic) microchromosome pairs, and W chromosome at early or advanced states of diversification from the Z chromosome. The observed W chromosome variations further support the most accepted hypothesis that W differentiation from the Z chromosome occurred by progressive steps. We also propose an evolutionary scenario for the observed high karyotype diversity in this group of snakes, suggesting that it is derived from a putative primitive pseudoxyrhophiine karyotype with 2n = 46, similar to that of Leioheterodon geayi, via a series of centric fusions and inversions among macrochromosomes and translocations of micro-either to micro-or to macrochromosomes. This primitive Pseudoxyrhophiinae karyotype might have derived from a putative Lamprophiidae ancestor with 2n = 48, by means of a translocation of a micro-to a macrochromosome. In turn, the karyotype of this lamprophiid common ancestor may have derived from the assumed primitive snake karyotype (2n = 36 chromosomes, with 16 biarmed macro-and 20 microchromosomes) by a series of centric fissions and one inversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.