In 1978, Thomas J. Sorensen defended a thesis in chemical engineering at the University of California, Berkeley, where he proposed an extensive model of glucose-insulin control, model which was thereafter widely employed for virtual patient simulation. The original model, and even more so its subsequent implementations by other Authors, presented however a few imprecisions in reporting the correct model equations and parameter values. The goal of the present work is to revise the original Sorensen’s model, to clearly summarize its defining equations, to supplement it with a missing gastrio-intestinal glucose absorption and to make an implementation of the revised model available on-line to the scientific community.
The most well-known and widely used mathematical representations of the physiology of a diabetic individual are the Sorensen and Hovorka models as well as the UVAPadova Simulator. While the Hovorka model and the UVAPadova Simulator only describe the glucose metabolism of a subject with type 1 diabetes, the Sorensen model was formulated to simulate the behaviour of both normal and diabetic individuals. The UVAPadova model is the most known model, accepted by the FDA, with a high level of complexity. The Hovorka model is the simplest of the three models, well documented and used primarily for the development of control algorithms. The Sorensen model is the most complete, even though some modifications were required both to the model equations (adding useful compartments for modelling subcutaneous insulin delivery) and to the parameter values. In the present work several simulated experiments, such as IVGTTs and OGTTs, were used as tools to compare the three formulations in order to establish to what extent increasing complexity translates into richer and more correct physiological behaviour. All the equations and parameters used for carrying out the simulations are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.