Ceramic tile production is an industrial process where energy efficiency management is crucial, given the high amount of energy (electrical and thermal) required by the production cycle. This study presents the preliminary results of a research project aimed at defining the benefits of using combined heat and power (CHP) systems in the ceramic sector. Data collected from ten CHP installations allowed us to outline the average characteristics of prime movers, and to quantify the contribution of CHP thermal energy supporting the dryer process. The electric size of the installed CHP units resulted in being between 3.4 MW and 4.9 MW, with an average value of 4 MW. Data revealed that when the goal is to maximize the generation of electricity for self-consumption, internal combustion engines are the preferred choice due to higher conversion efficiency. In contrast, gas turbines allowed us to minimize the consumption of natural gas input to the spray dryer. Indeed, the fraction of the dryer thermal demand (between 600–950 kcal/kgH2O), covered by CHP discharged heat, is strictly dependent on the type of prime mover installed: lower values, in the range of 30–45%, are characteristic of combustion engines, whereas the use of gas turbines can contribute up to 77% of the process’s total consumption.
The cement industry is highly energy-intensive, consuming approximately 7% of global industrial energy consumption each year. Improving production technology is a good strategy to reduce the energy needs of a cement plant. The market offers a wide variety of alternative solutions; besides, the literature already provides reviews of opportunities to improve energy efficiency in a cement plant. However, the technology is constantly developing, so the available alternatives may change within a few years. To keep the knowledge updated, investigating the current attractiveness of each solution is pivotal to analyze real companies. This article aims at describing the recent application in the Italian cement industry and the future perspectives of technologies. A sample of plant was investigated through the analysis of mandatory energy audit considering the type of interventions they have recently implemented, or they intend to implement. The outcome is a descriptive analysis, useful for companies willing to improve their sustainability. Results prove that solutions to reduce the energy consumption of auxiliary systems such as compressors, engines, and pumps are currently the most attractive opportunities. Moreover, the results prove that consulting sector experts enables the collection of updated ideas for improving technologies, thus giving valuable inputs to the scientific research.
In this work, a novel methodology to assess energy performance indicators of productive and economic sectors trough the analysis of the Italian mandatory energy audits database is presented. The updating of sectoral reference energy performance indicators is fundamental for both companies and policy makers—for the formers to evaluate and compare their energy performance with competitors in order to achieve improvements and for the latter to effectively monitor the impact of energy policies. This methodology could be potentially applied to all production sectors, providing key information needed to characterize various production processes from an energy point of view. Awareness of energy efficiency and sectorial benchmarking represent the first necessary steps for companies moving towards energy transition. This paper provides details of the statistical method developed and its application to the NACE 23 division “Manufacturing of other non-metallic mineral products”, with a focus on the cement industry. For this sector, results are presented in terms of specific indicators based on energy source. General results, methodological insights, and validation of the proposed case study are discussed.
The implementation of monitoring tools and energy management systems (EnMSs) supports companies in their long-term energy efficiency strategies, and they are essential to analyse the effectiveness of energy performance improvement actions (EPIAs). The first fundamental step towards increasing energy efficiency is the development of energy audits (EAs). EAs provide comprehensive information about the energy usage in a specific facility, identifying and quantifying cost-effective EPIAs. The crucial role of these tools in clean energy transition is remarked by the European Energy Efficiency Directive (EED), which promotes the implementation of EAs and EnMS programmes. The purpose of this work is to better understand the link between EnMSs (specifically ISO 50001) and EAs in the EED Article 8 implementation in two industrial and two tertiary sectors in Italy. Moreover, the impact of company size, energy monitoring systems, and EnMSs on planned and/or implemented EPIAs is analysed. Our findings show that, albeit the complexity of the variables involved in energy efficiency gap, the “energy savings/company” and “EPIA/site” ratios are higher in enterprises with an EnMS and monitoring system. Thus, a correct energy audit must always be accompanied by a specific monitoring plan if it is to be effective and useful to the company decision maker.
The increased focus on energy efficiency, both at the national and international levels, has fostered the diffusion and development of specific energy consumption benchmarks for most relevant economic sectors. In this context, energy-intensive facilities, such as hospitals and health structures, represent a unique case. Indeed, despite the high energy consumption of these structures, scientific literature lacks the presence of adequate energy performance benchmarks, especially in regard to the European context. Thus, this study aimed at defining energy benchmark indicators for the Italian private healthcare sector using data collected from the Italian mandatory energy audits according to Art.8 EU Directive 27/2012. The benchmark indicators’ definition was made using a methodology proposed by the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). This methodology provided the calculation of specific energy performance indicators (EnPIs) by considering the global energy consumption of the different sites and the sector’s relevant variables. The results obtained were compared with those obtained from a consolidated but more complex methodology: the one envisaged by the Environmental Protection Agency. The results obtained allowed us to validate the reliability of the proposed methodology, as well as the validity and future usability of the calculated indicators. Relying on a significant database containing actual data from recent energy audits, this study was thus able to provide an up-to-date and reliable benchmark for the private healthcare sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.