Bioactivity-guided fractionation of the methanolic root bark extract of Leucophyllum frutescens (Berl.) I.M. Johnst. led to the identification of leubethanol (1), a new serrulatane-type diterpene with activity against both multi drug-resistant and drug-sensitive strains of virulent Mycobacterium tuberculosis. Leubethanol (1) was identified by 1D/2D NMR data, as a serrulatane closely related to erogorgiane (2), and exhibited anti-TB activity with minimum inhibitory concentrations in the range 6.25–12.50 µg/mL. Stereochemical evidence for 1 was gleaned from 1D and 2D NOE experiments, 1H-NMR full spin analysis, as well as by comparison of the experimental vibrational circular dichroism (VCD) spectrum to density functional theory calculated VCD spectra of two diastereomers.
The absolute configuration of the two natural diastereoisomers of 6beta-hydroxyhyoscyamine has been determined using vibrational circular dichroism (VCD) spectroscopy. The predicted VCD and IR spectra of (3R,6R,2'S)-6beta-hydroxyhyoscyamine (1) and (3S,6S,2'S)-6beta-hydroxyhyoscyamine (2) were calculated using density functional theory (DFT) with the B3LYP functional and 6-31G(d) basis set and considering the eight lower energy conformations of each diastereoisomer. In both cases, the first four conformers showed the N-Me group in the syn orientation, permitting the formation of a hydrogen bond between the hydroxy group at the tropane ring and the tertiary nitrogen atom. In addition the eight conformers showed an intramolecular hydrogen bond between the hydroxy and carbonyl groups of the tropic ester moiety. The calculated IR spectra of both molecules showed good agreement with the experimental spectra, while comparison of the experimental and calculated VCD spectra showed that the absolute configuration of dextrorotatory 6beta-hydroxyhyoscyamine is (3R,6R,2'S), while the levorotatory isomer is (3S,6S,2'S).
Careful examination of the published NMR data for isoepitaondiol, a meroditerpenoid from Stypopodium flabelliforme, suggests that its published structure 1 must be revised. On the basis of extensive 1D and 2D NMR studies, we now propose that structure 2, with a trans-anti-trans-anti-cis arrangement fits isoepitaondiol diacetate. The relative configuration of 2 was confirmed by single-crystal X-ray diffraction, while the absolute configuration was evidenced by vibrational circular dichroism in combination with DFT B3LYP/DGDZVP calculations.
(1)H and (13)C NMR chemical shift calculations using the density functional theory-gauge including/invariant atomic orbitals (DFT-GIAO) approximation at the B3LYP/6-311G++(d,p) level of theory have been used to assign both natural diastereoisomers of 6beta-hydroxyhyoscyamine. The theoretical chemical shifts of the (1)H and (13)C atoms in both isomers were calculated using a previously determined conformational distribution, and the theoretical and experimental values were cross-compared. For protons, the obtained average absolute differences and root mean square (rms) errors for each comparison showed that the experimental chemical shifts of dextrorotatory and levorotatory 6beta-hydroxyhyoscyamines correlated well with the theoretical values calculated for the (3R,6R,2'S) and (3S,6S,2'S) configurations, respectively, whereas for (13)C atoms the calculations were unable to differentiate between isomers. The nature of the relatively large chemical shift differences observed in nuclei that share similar chemical environments between isomers was asserted from the same calculations. It is shown that the anisotropic effect of the phenyl group in the tropic ester moiety, positioned under the tropane ring, has a larger shielding effect over one ring side than over the other one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.