In the present paper a procedure for preconcentration and determination of vanadium and copper in seawater using inductively coupled plasma optical emission spectrometry (ICP OES) is proposed, which is based on solid-phase extraction of vanadium (IV), vanadium (V) and copper (II) ions as 1-(2-pyridylazo)-2-naphthol (PAN) complexes by active carbon. The optimization process was carried out using two-level full factorials and Doehlert matrix designs. Four variables (PAN mass, pH, active carbon mass and shaking time) were regarded as factors in the optimization. Results of the two-level full factorial design 2 with 16 runs for vanadium extraction, based on the variance analysis 4 (ANOVA), demonstrated that the factors pH and active carbon mass, besides the interaction (pH=active carbon mass), are statistically significant. For copper, the ANOVA revealed that the factors PAN mass, pH and active carbon mass and the interactions (PAN mass=pH) and (pH=active carbon mass) are statistically significant. Doehlert designs were applied in order to determine the optimum conditions for extraction. The procedure proposed allowed the determination of vanadium and copper with detection limits (3syS) of 73 and 94 ng l , respectively. The y1 precision, calculated as relative standard deviation (R.S.D.), was 1.22 and 1.37% for 12.50 mg l of vanadium and y1 copper, respectively. The preconcentration factor was 80. The recovery achieved for determination of vanadium and copper in the presence of several cations demonstrated that this procedure improved the selectivity required for seawater analysis. The procedure was applied to the determination of vanadium and copper in seawater samples collected in Salvador City, Brazil. Results showed good agreement with other data reported in the literature.
This study investigated the effects of diaphragmatic breathing (DB) on ventilation and breathing pattern, seeking to identify predictors of its efficacy in patients with chronic obstructive pulmonary disease (COPD). Twenty-nine patients with moderate and severe COPD were monitored using respiratory inductance plethysmography and metabolic gas analysis. After 4 minutes of natural breathing, subjects completed 2 minutes of DB followed by 4 minutes of natural breathing. Dyspnea was measured using a visual analogue scale. Diaphragmatic mobility was assessed using chest radiography. DB was associated with a significant increase in tidal volume and reduction in breathing frequency, leading to higher ventilation and oxygen saturation, with a reduction in dead space ventilation and ventilatory equivalent for carbon dioxide. A total of 10 subjects with moderate (5) and severe (5) COPD performed DB with asynchronous thoracoabdominal motion, worsening the dyspnea, and decreasing the gain of tidal volume. Diaphragmatic mobility, inspiratory muscular strength, lower scores for dyspnea and hypoxemia as well as coordinated thoracoabdominal motion are associated with effective DB. In patients with COPD, DB can improve breathing pattern and ventilatory efficiency without causing dyspnea in patients whose respiratory muscular system is preserved.
Administration of high doses of fluoride (F) can alter glucose homeostasis and lead to insulin resistance (IR). This study determined the profile of protein expression in the gastrocnemius muscle of rats with streptozotocin-induced diabetes that were chronically exposed to F. Male Wistar rats (60 days old) were randomly distributed into two groups of 18 animals. In one group, diabetes was induced through the administration of streptozotocin. Each group (D-diabetic and ND-non-diabetic) was further divided into 3 subgroups each of which was exposed to a different F concentration via drinking water (0 ppm, 10 ppm or 50 ppm F, as NaF). After 22 days of treatment, the gastrocnemius muscle was collected and submitted to proteomic analysis (2D-PAGE followed by LC-MS/MS). Protein functions were classified by the GO biological process (ClueGO v2.0.7+Clupedia v1.0.8) and protein-protein interaction networks were constructed (PSICQUIC, Cytoscape). Quantitative intensity analysis of the proteomic data revealed differential expression of 75 spots for ND0 vs. D0, 76 for ND10 vs.D10, 58 spots for ND50 vs. D50, 52 spots for D0 vs. D10 and 38 spots for D0 vs. D50. The GO annotations with the most significant terms in the comparisons of ND0 vs. D0, ND10 vs. D10, ND50 vs. D50, D0 vs. D10 and D0 vs. D50, were muscle contraction, carbohydrate catabolic processes, generation of precursor metabolites and energy, NAD metabolic processes and gluconeogenesis, respectively. Analysis of subnetworks revealed that, in all comparisons, proteins with fold changes interacted with GLUT4. GLUT4 interacting proteins, such as MDH and the stress proteins HSPB8 and GRP78, exhibited decreased expression when D animals were exposed to F. The presence of the two stress proteins indicates an increase in IR, which might worsen diabetes. Future studies should evaluate whether diabetic animals treated with F have increased IR, as well as which molecular mechanisms are involved.
The effect of chronic fluoride (F) exposure from the drinking water on parameters related to glucose homeostasis was investigated. Wistar rats were randomly distributed into 2 groups (diabetic [D] and nondiabetic [ND]; n = 54 each). In D, diabetes was induced with streptozotocin. Each group was further divided into 3 subgroups (0, 10, or 50 mgF/L in drinking water). After 22 days of treatment, plasma and liver samples were collected. No alterations in glycemia, insulinemia, K(ITT), and HOMA2-IR (homeostasis model assessment 2 of insulin resistance) were seen for ND. F-exposure of D rats led to significantly lower insulinemia, without alterations in glycemia (increased %S). Proteomic analysis detected 19, 39, and 16 proteins differentially expressed for the comparisons D0 vs. D10, D0 vs. D50, and D10 vs. D50, respectively. Gene Ontology with the most significant terms in the comparisons D0 vs. D10, D0 vs. D50, and D50 vs. D10 were organic acid metabolic process and carboxylic acid metabolic process, organic acid metabolic process, and cellular ketone metabolic process. Analysis of subnetworks revealed that proteins with fold changes interacted with GLUT4 in comparison D0 vs. D10. Among these proteins, ERj3p was present in D10. Upregulation of this protein in the presence of F might help to explain the higher %S found in these animals. These data suggest that fluoride might enhance glucose homeostasis in diabetes and identify specific biological mechanisms that merit future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.