Hot strip structural steel coil used in construction, engineering, transport, structural applications and other applications are widely used in yield strengths from 300 -700 MPa. However, structural design engineers are now not only requiring various strength levels but also other mechanical properties, primarily good formability, toughness and weldability. To produce a balanced approach to a cost effective structural steel, hot strip coil requires an understanding of utilization of an optimized alloy composition designed for the layout/equipment capabilities of a given hot strip mill to produce the desired metallurgy for optimum mechanical property performance. The term "cost effective" does not just focus on alloy design, but also ease of overall processing from steelmaking, casting, rolling and cooling, stable mechanical properties with a statistically normal distribution, no downgrades/rejections and a product that the end user recognizes as being superior to others. The desired metallurgy is simply understanding what will be the optimum microstructure and cross sectional grain size/distribution needed to meet the mechanical property requirements. This paper is a follow up paper that previously described optimum base alloy designs along with steelmaking/casting processing considerations and will focus on proper reheating, rolling and cooling metallurgy/processing strategies to produce quality cost effective hot strip structural steel coil.
Nb is a classical microalloying element in the design of thermomechanical treatments in low carbon steels for flat products applications. However, its use in medium-high carbon grades, as occurs in hot rolling of bars, is less common. This is, in part, because of the diversity of characteristics required to those grades of steels and the less knowledge about the function of Nb in these cases. Consequently, less information is reported concerning thermo-mechanical processing of Nb microalloyed steels in long products applications. In this case, it is necessary to consider the singularities related to these processes, such as the short interpass times and the wide range of chemical compositions usually applied on these products. Short interpass times result in high strain rate values that can lead to metallurgical changes on the mechanisms occurring during the hot rolling must be considered. Moreover, the high Carbon contents applied in long products, usually between 0.20–0.40%, can influence the Nb solubility and precipitation in each stage of the process: prior to hot rolling on the reheating furnace, during the process and after hot rolling, depending on the cooling strategy adopted and on the post-rolling heat treatments that can be applied. This paper analyses different singularities associated with the use of Nb microalloying for long products. Several aspects, such as the partial or complete dissolution of the Nb prior to hot rolling, its role in the control of austenite microstructure and its incidence in the final microstructure and mechanical properties, will be considered.
Obtaining high levels of mechanical properties in steels is directly linked to the use of special mechanical forming processes and the addition of alloying elements during their manufacture. This work presents a study of a hot-rolled steel strip produced to achieve a yield strength above 600 MPa, using a niobium microalloyed HSLA steel with non-stoichiometric titanium (titanium/nitrogen ratio above 3.42), and rolled on a Steckel mill. A major challenge imposed by rolling on a Steckel mill is that the process is reversible, resulting in long interpass times, which facilitates recrystallization and grain growth kinetics. Rolling parameters whose aim was to obtain the maximum degree of microstructural refinement were determined by considering microstructural evolution simulations performed in MicroSim-SM® software and studying the alloy through physical simulations to obtain critical temperatures and determine the CCT diagram. Four ranges of coiling temperatures (525–550 °C/550–600 °C/600–650 ° C/650–700 °C) were applied to evaluate their impact on microstructure, precipitation hardening, and mechanical properties, with the results showing a very refined microstructure, with the highest yield strength observed at coiling temperatures of 600–650 °C. This scenario is explained by the maximum precipitation of titanium carbide observed at this temperature, leading to a greater contribution of precipitation hardening provided by the presence of a large volume of small-sized precipitates. This paper shows that the combination of optimized industrial parameters based on metallurgical mechanisms and advanced modeling techniques opens up new possibilities for a robust production of high-strength steels using a Steckel mill. The microstructural base for a stable production of high-strength hot-rolled products relies on a consistent grain size refinement provided mainly by the effect of Nb together with appropriate rolling parameters, and the fine precipitation of TiC during cooling provides the additional increase to reach the requested yield strength values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.