Moore-Gibson-Thompson (MGT) equations, which describe acoustic waves in a heterogeneous medium, are considered. These are the third order in time evolutions of a predominantly hyperbolic type. MGT models account for a finite speed propagation due to the appearance of thermal relaxation coefficient τ > 0 in front of the third order time derivative. Since the values of τ are relatively small and often negligible, it is important to understand the asymptotic behavior and characteristics of the model when τ → 0. This is a particularly delicate issue since the τ − dynamics is governed by a generator which is singular as τ → 0. It turns out that the limit dynamics corresponds to the linearized Westervelt equation which is of a parabolic type. In this paper, we provide a rigorous analysis of the asymptotics which includes strong convergence of the corresponding evolutions over infinite horizon. This is obtained by studying convergence rates along with the uniform exponential stability of the third order evolutions. Spectral analysis for the MGT-equation along with a discussion of spectral uppersemicontinuity for both equations (MGT and linearized Westervelt) will also be provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.