Macromolecular brushes with a gradient of side-chain spacing along the backbone have been synthesized by the "grafting from" approach using atom transfer radical polymerization. A macroinitiator was prepared in two steps, first by conducting a gradient copolymerization of MMA and HEMA-TMS followed by transformation of the resulting poly(MMA-grad-HEMA-TMS) to poly(MMAgrad-BPEM). The gradient composition of the macroinitiator was a forced gradient formed by continuous feeding of HEMA-TMS during MMA polymerization. The gradient structure was characterized by monitoring monomer conversion (GC) and molecular weight evolution (GPC) during copolymerization. AFM measurements demonstrated the characteristic anisotropy of the molecular structure by resolving individual brush molecules with a bulky head and a thin tail.
This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.
Absolute-molecular-weight distribution of cylindrical brush molecules were determined using a combination of the Langmuir Blodget (LB) technique and Atomic Force Microscopy (AFM). The LB technique gives mass density of a monolayer, i.e., mass per unit area, whereas visualization of individual molecules by AFM enables accurate measurements of the molecular density, i.e., number of molecules per unit area. From the ratio of the mass density to the molecular density, one can determine the absolute value for the number average molecular weight. Assuming that the structure of brush molecules is uniform along the backbone, the length distribution should be virtually identical to the molecular weight distribution. Although we used only brush molecules for demonstration purpose, this approach can be applied for a large variety of molecular and colloidal species that can be visualized by a microscopic technique.
Charge distribution in insulators has received considerable attention but still poses great scientific challenges, largely due to a current lack of firm knowledge about the nature and speciation of charges. Recent studies using analytical microscopies have shown that insulators contain domains with excess fixed ions forming various kinds of potential distribution patterns, which are also imaged by potential mapping using scanning electric probe microscopy. Results from the authors' laboratory show that solid insulators are seldom electroneutral, as opposed to a widespread current assumption. Excess charges can derive from a host of charging mechanisms: excess local ion concentration, radiochemical and tribochemical reactions added to the partition of hydroxonium and hydronium ions derived from atmospheric water. The last factor has been largely overlooked in the literature, but recent experimental evidence suggests that it plays a decisive role in insulator charging. Progress along this line is expected to help solve problems related to unwanted electrostatic discharges, while creating new possibilities for energy storage and handling as well as new electrostatic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.