The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients (“high-risk combinations”) under conditions simulating transport between continents and provide further evidence that contaminated feed ingredients may represent a risk for transport of pathogens at domestic and global levels.
Porcine reproductive and respiratory syndrome virus (PRRSV) contains the major glycoprotein, GP5, as well as three other minor glycoproteins, namely, GP2a, GP3, and GP4, on the virion envelope, all of which are required for generation of infectious virions. To study their interactions with each other and with the cellular receptor for PRRSV, we have cloned each of the viral glycoproteins and CD163 receptor in expression vectors and examined their expression and interaction with each other in transfected cells by coimmunoprecipitation (co-IP) assay using monospecific antibodies. Our results show that a strong interaction exists between the GP4 and GP5 proteins, although weak interactions among the other minor envelope glycoproteins and GP5 have been detected. Both GP2a and GP4 proteins were found to interact with all the other GPs, resulting in the formation of multiprotein complex. Our results further show that the GP2a and GP4 proteins also specifically interact with the CD163 molecule. The carboxy-terminal 223 residues of the CD163 molecule are not required for interactions with either the GP2a or the GP4 protein, although these residues are required for conferring susceptibility to PRRSV infection in BHK-21 cells. Overall, we conclude that the GP4 protein is critical for mediating interglycoprotein interactions and, along with GP2a, serves as the viral attachment protein that is responsible for mediating interactions with CD163 for virus entry into susceptible host cell.
We describe B-cell linear epitopes detected by Pepscan in the Nsp2 and all of the structural proteins of a US PRRSV strain, using sera of 15 experimentally infected pigs. The Nsp2 was found to contain the highest frequency of immunodominant epitopes (n = 18) when compared to structural proteins. Ten of these 18 Nsp2 peptides were reactive with 80 to 100% of the examined sera. In the structural proteins, epitopes consistently recognized by immune sera were located at gp2 (n = 2), gp3 (n = 4), gp5 (n = 3), M (n = 2) and N (n = 2). Overall, the highest degree of immunogenicity and conservation was exhibited by two epitopes identified in the C-terminal end of the M protein (ORF6). The antibodies recognizing the immunodominant epitopes of each protein were detected as early as days 7 to 15 pi and remained detectable until the end of the experiment (day 90 pi). These findings have direct implications for PRRSV differential diagnostics and eventual eradication as the identified epitopes may represent serologic marker candidates for differential (DIVA) PRRSV vaccines, derived from infectious cDNA clones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.