Gas hydrates have been potentially recognized for developing new technologies for CO2 capture and storage; however, the respective industrialization faces difficulties. Hydrate's crystallization is highly exothermic, 1.3 kJ tonne−1 of captured CO2, and it only occurs in a narrow window of temperatures, typically 1–5 °C. Previous works have systematically reported low space–time yields (STY) due to low specific heat and mass transfer rates of the technologies tested. Herein, NetMIX, a novel mixing technology, is used for the continuous production of CO2 hydrates. NetMIX is a structured mixer consisting of a network of unit cells comprising mixing chambers interconnected by channels. The device used here has specific heat transfer rates ranging from 107 to 108
W m
−
3
°C
−
1
. The setup proves to be capable of producing hydrates at a STY of 200
tonne h
−
1
normalm
−
3
, two orders of magnitude larger than other technologies, resulting in a slurry with more than 20 wt% of CO2 inside the hydrates lattice. The solid is characterized, and a cubic structure I (sI) hydrate structure is detected, with no ice traces. Moreover, results indicate that the process is stable, and no plugging occurs, crucial for industrialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.