One difficulty for real‐time tracking of epidemics is related to reporting delay. The reporting delay may be due to laboratory confirmation, logistical problems, infrastructure difficulties, and so on. The ability to correct the available information as quickly as possible is crucial, in terms of decision making such as issuing warnings to the public and local authorities. A Bayesian hierarchical modelling approach is proposed as a flexible way of correcting the reporting delays and to quantify the associated uncertainty. Implementation of the model is fast due to the use of the integrated nested Laplace approximation. The approach is illustrated on dengue fever incidence data in Rio de Janeiro, and severe acute respiratory infection data in the state of Paraná, Brazil.
Brazil detected community transmission of COVID-19 on March 13, 2020. In this study we identified which areas in the country were the most vulnerable for COVID-19, both in terms of the risk of arrival of cases, the risk of sustained transmission and their social vulnerability. Probabilistic models were used to calculate the probability of COVID-19 spread from São Paulo and Rio de Janeiro, the initial hotspots, using mobility data from the pre-epidemic period, while multivariate cluster analysis of socioeconomic indices was done to identify areas with similar social vulnerability. The results consist of a series of maps of effective distance, outbreak probability, hospital capacity and social vulnerability. They show areas in the North and Northeast with high risk of COVID-19 outbreak that are also highly socially vulnerable. Later, these areas would be found the most severely affected. The maps produced were sent to health authorities to aid in their efforts to prioritize actions such as resource allocation to mitigate the effects of the pandemic. In the discussion, we address how predictions compared to the observed dynamics of the disease.
Resumo: A vigilância de síndrome respiratória aguda grave (SRAG) no Brasil visa a caracterizar a circulação dos vírus Influenza A e B em casos hospitalizados e óbitos, tendo sido ampliada em 2012 para incluir outros vírus respiratórios. A COVID-19 foi detectada no Brasil pela primeira vez na 9ª semana epidemiológica de 2020 e o teste para o vírus SARS-CoV-2 foi incluído no protocolo de vigilância a partir da 12ª semana epidemiológica. O objetivo deste estudo foi investigar o padrão de hospitalizações por SRAG no país após a entrada do SARS-CoV-2, comparando o perfil temporal, etário e de resultados laboratoriais com os anos de 2010 a 2019. Em 2020, a hospitalização por SRAG, contabilizada desde a data do primeiro caso de COVID-19 confirmado até a 12ª semana, superou o observado, no mesmo período, em cada um dos 10 anos anteriores. A faixa etária acima de 60 anos foi a mais acometida, em nível acima do histórico. Houve um aumento considerável de testes laboratoriais negativos, sugerindo a circulação de um vírus diferente dos presentes no painel. Concluímos que o aumento das hospitalizações por SRAG, a falta de informação específica sobre o agente etiológico e a predominância de casos entre idosos, no mesmo período de tempo em que cresce o número de casos novos de COVID-19, é coerente com a hipótese de que os casos graves da doença já estejam sendo detectados pela vigilância de SRAG com sobrecarga para o sistema de saúde. A inclusão da testagem para SARS-CoV-2 no protocolo de vigilância de SRAG e sua efetiva implementação são de grande importância para acompanhar a evolução dos casos graves da doença no país.
O presente estudo tem o objetivo de descrever os pacientes hospitalizados por síndrome respiratória aguda grave (SRAG) em decorrência da COVID-19 (SRAG-COVID), no Brasil, quanto às suas características demográficas e comorbidades até a 21ª Semana Epidemiológica de 2020. Buscou-se comparar essas características com as dos hospitalizados por SRAG em decorrência da influenza em 2019/2020 (SRAG-FLU) e com a população geral brasileira. As frequências relativas das características demográficas, comorbidades e de gestantes/puérperas entre os pacientes hospitalizados por SRAG-COVID e SRAG-FLU foram obtidas por meio do Sistema de Informação de Vigilância Epidemiológica da Gripe (SIVEP-Gripe), e as estimativas para a população geral brasileira foram obtidas por meio de projeções populacionais realizadas pelo Instituto Brasileiro de Geografia e Estatística, dados do Sistema de Informações sobre Nascidos Vivos e de pesquisas de âmbito nacional. Entre os hospitalizados por SRAG-COVID, observou-se uma elevada proporção, em relação ao perfil da população geral brasileira, de indivíduos do sexo masculino, idosos ou com 40 a 59 anos, com comorbidades (diabetes mellitus, doença cardiovascular, doença renal crônica e pneumopatias crônicas) e de gestantes/puérperas. Já entre os hospitalizados por SRAG-FLU, observou-se prevalências superiores às populacionais de indivíduos de 0 a 4 anos de idade ou idosos, de raça ou cor branca, com comorbidades (diabetes mellitus, doença renal crônica, asma e outras pneumopatias crônicas) e de gestantes/puérperas. Esses grupos podem estar evoluindo para casos mais graves da doença, de forma que estudos longitudinais na área são de extrema relevância para investigar esta hipótese e melhor subsidiar políticas públicas de saúde.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.