Abstract. The concept of generalised species of structures between small categories and, correspondingly, that of generalised analytic functor between presheaf categories are introduced. An operation of substitution for generalised species, which is the counterpart to the composition of generalised analytic functors, is also put forward. These definitions encompass most notions of combinatorial species considered in the literature-including of course Joyal's original notion-together with their associated substitution operation. Our first main result exhibits the substitution calculus of generalised species as arising from a Kleisli bicategory for a pseudo-comonad on profunctors. Our second main result establishes that the bicategory of generalised species of structures is cartesian closed.
Axiomatic categorical domain theory is crucial for understanding the meaning of programs and reasoning about them. This book is the first systematic account of the subject and studies mathematical structures suitable for modelling functional programming languages in an axiomatic (i.e. abstract) setting. In particular, the author develops theories of partiality and recursive types and applies them to the study of the metalanguage FPC; for example, enriched categorical models of the FPC are defined. Furthermore, FPC is considered as a programming language with a call-by-value operational semantics and a denotational semantics defined on top of a categorical model. To conclude, for an axiomatisation of absolute non-trivial domain-theoretic models of FPC, operational and denotational semantics are related by means of computational soundness and adequacy results. To make the book reasonably self-contained, the author includes an introduction to enriched category theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.