The small pulmonary veins (SPVs) may play a role in the development of pulmonary hypertension and pulmonary oedema via active changes in SPV diameter, mediated by vascular smooth muscle cell (VSMC) contraction. However, the excitation-contraction coupling mechanisms during vasoconstrictor stimulation remain poorly understood in these veins. We used rat precision-cut lung slices and phase-contrast and confocal microscopy to investigate dynamic changes in SPV cross-sectional luminal area and intracellular Ca signalling in their VSMCs. We found that the SPV (∼150 μm in diameter) contract strongly in response to extracellular ATP and other vasoconstrictors, including angiotensin-II and endothelin-1. ATP-induced SPV contraction was fast, concentration-dependent, completely reversible upon ATP washout, and inhibited by purinergic receptor antagonists suramin and AR-C118925 but not by MRS2179. Immunofluorescence showed purinergic P2Y2 receptors expressed in SPV VSMCs. ATP-induced SPV contraction was inhibited by phospholipase Cβ inhibitor U73122 and accompanied by intracellular Ca oscillations in the VSMCs. These Ca oscillations and SPV contraction were inhibited by the inositol 1,4,5-trisphosphate receptor inhibitor 2-APB but not by ryanodine. The results of the present study suggest that ATP-induced vasoconstriction in SPVs is associated with the activation of purinergic P2Y2 receptors in VSMCs and the generation of Ca oscillations.
People living with HIV and who receive antiretroviral therapy have a significantly improved lifespan, compared to the early days without therapy. Unfortunately, persisting viral replication in the lungs sustains chronic inflammation, which may cause pulmonary vascular dysfunction and ultimate life-threatening Pulmonary Hypertension (PH). The mechanisms involved in the progression of HIV and PH remain unclear. The study of HIV-PH is limited due to the lack of tractable animal models that recapitulate infection and pathobiological aspects of PH. On one hand, mice with humanized immune systems (hu-mice) are highly relevant to HIV research but their suitability for HIV-PH research deserves investigation. On another hand, the Hypoxia-Sugen is a well-established model for experimental PH that combines hypoxia with the VEGF antagonist SU5416. To test the suitability of hu-mice, we combined HIV with either SU5416 or hypoxia. Using right heart catheterization, we found that combining HIV+SU5416 exacerbated PH. HIV infection increases human pro-inflammatory cytokines in the lungs, compared to uninfected mice. Histopathological examinations showed pulmonary vascular inflammation with arterial muscularization in HIV-PH. We also found an increase in endothelial-monocyte activating polypeptide II (EMAP II) when combining HIV+SU5416. Therefore, combinations of HIV with SU5416 or hypoxia recapitulate PH in hu-mice, creating well-suited models for infectious mechanistic pulmonary vascular research in small animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.