Morphological and biochemical studies have shown that autophagosomes fuse with endosomes forming the socalled amphisomes, a prelysosomal hybrid organelle. In the present report, we have analyzed this process in K562 cells, an erythroleukemic cell line that generates multivesicular bodies (MVBs) and releases the internal vesicles known as exosomes into the extracellular medium. We have previously shown that in K562 cells, Rab11 decorates MVBs. Therefore, to study at the molecular level the interaction of MVBs with the autophagic pathway, we have examined by confocal microscopy the fate of MVBs in cells overexpressing green fluorescent protein (GFP)-Rab11 and the autophagosomal protein red fluorescent protein-light chain 3 (LC3). Autophagy inducers such as starvation or rapamycin caused an enlargement of the vacuoles decorated with GFP-Rab11 and a remarkable colocalization with LC3. This convergence was abrogated by a Rab11 dominant negative mutant, indicating that a functional Rab11 is involved in the interaction between MVBs and the autophagic pathway. Interestingly, we presented evidence that autophagy induction caused calcium accumulation in autophagic compartments. Furthermore, the convergence between the endosomal and the autophagic pathways was attenuated by the Ca 21 chelator acetoxymethyl ester (AM) of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), indicating that fusion of MVBs with the autophagosome compartment is a calcium-dependent event. In addition, autophagy induction or overexpression of LC3 inhibited exosome release, suggesting that under conditions that stimulates autophagy, MVBs are directed to the autophagic pathway with consequent inhibition in exosome release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.