The results of a paleomagnetic study along the fore arc of southern Peru (15–18°S) and northern Chile (18–19°S) are reported from middle to late Miocene ignimbrites (7 sites), late Oligocene to early Miocene ignimbrites (72 sites), Paleogene sediments (20 sites), and Mesozoic and Paleocene volcanics and intrusions (31 sites). Comparison of locality‐mean directions with expected paleomagnetic directions indicates vertical axis rotations ranging from 5.2 ± 11.3° clockwise to 55.6 ± 7.0° counterclockwise. Spatially, the magnitude of counterclockwise rotations increases northward from ∼0° within the Chilean fore arc south of 18°30′S to >45° north of 16°30′S. In southern Peru, paleomagnetic rotations recorded in Paleogene red beds decrease from late Eocene to late Oligocene, whereas Miocene ignimbrites display no evidence of rotation. These new results confirm that the rotations recorded in the fore arc of southern Peru were acquired at least before ∼15 Ma, and probably before 25 Ma, and thus prior to the late Neogene shortening of the sub‐Andes. The onset of major Andean shortening in the Eastern Cordillera during the latest Eocene–earliest Oligocene is interpreted to have triggered the bending of the Peruvian fore arc. The region of the Peruvian fore arc with the largest rotations appears to be the fore‐arc counterpart of the Abancay deflection, a remarkable NE‐SW offset in the axis of the Eastern Cordillera induced by a major regional preorogenic structure. We underline that the Abancay deflection should be seen as the northwestern boundary, and therefore as a key element, of the Bolivian Orocline.
Major fluvial incision (600–1000 m) affecting the Coastal Cordillera and Central Depression of northern Chile is analysed to evaluate supposed coeval uplift of the Altiplano and/or climatic changes in the Atacama Desert. The timing of the beginning of incision is constrained by the age of deposition of the Central Depression top. In the north (18–19°S), this top corresponds to fluvial gravels accumulated between 11.9 ± 0.6 Ma and 8.3 ± 0.5 Ma, which are genetically related to semiarid climate and to an eastward poorly dissected parallel drainage network that developed between 15.0 ± 0.6 and 11.2 ± 0.6 Ma; thus, gravel deposition ended at 11.9–11.2 Ma. To the south (19–20°S), the Central Depression top corresponds to
c
. 6 Ma alluvial deposits. Stratigraphically determined canyon ages and knickzone locations indicate that southward dissection began later and/or developed under a regime of lower erosion capacity owing to drier climate. Vertical incision rate evolution is compatible with eastward knickzone migration. Dissection required a considerable altitude difference between ancient and present-day river base levels, which was achieved predominantly by basin infill on an already partially elevated bedrock. Therefore subsequent incision would have been triggered by local semiarid climatic periods rather than by contemporaneous surface uplift. Exoreic canyons occur when climatic conditions in the catchments are arid–semiarid whereas endoreism is developed when these conditions in catchments are hyperarid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.