Brazil is one of the most vulnerable regions to extreme climate events, especially in recent decades, where these events posed a substantial threat to the socio-ecological system. This work underpins the provision of actionable information for society's response to climate variability and change. It provides a comprehensive assessment of the skill of the state-of-art Coupled Model Intercomparison Project, Phase 6 (CMIP6) models in simulating regional climate variability over Brazil during the present-day period. Different statistical analyses were employed to identify systematic biases and to choose the best subset of models to reduce uncertainties. The results show that models perform better for winter than summer precipitation, consistent with previous results in the literature. In both seasons, the worst performances were found for Northeast Brazil. Results also show that the models present deficiencies in simulating temperature over Amazonian regions. A good overall performance for precipitation and temperature in the La Plata Basin was found, in agreement with previous studies. Finally, the models with the highest ability in simulating monthly rainfall, aggregating all five Brazilian regions, were HadGEM3-GC31-MM, ACCESS-ESM1-5, IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, and INM-CM4-8, while for monthly temperatures, they were CMCC-ESM2, CMCC-CM2-SR5, MRI-ESM2-0, BCC-ESM1, and HadGEM3-GC31-MM. The application of these results spans both past and possible future climates, supporting climate impact studies and providing information to climate policy and adaptation activities.
The present study analyzes the impacts of global warming of 1.5ºC, 2ºC, and 4ºC above pre-industrial levels in the Brazilian territory. Climate change projected among the different global warming levels has been analyzed for rainfall, temperature and extreme climate indices. The projections are derived from the global climate model HadGEM3-A, from the High-End cLimate Impacts and eXtremes (HELIX) international project, from the United Kingdom, forced by sea surface temperature and sea ice concentration of a subset of six CMIP5 (Coupled Model Intercomparison Project phase 5) global climate models and considering the RCP 8.5 (Representative Concentration Pathways) emissions scenario throughout the 21st century. Projections indicate robust differences in regional climate characteristics. These differences include changes: in the minimum and maximum air temperature close to the surface to all the country’s regions, in extremes of heat, particularly in northern Brazil, in the occurrence of heavy rainfall (Southern and Southeastern regions), and in the probability of droughts and rain deficits in some regions (Northern and Northeastern Brazil).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.