Purpose Several studies have aimed to develop robotic systems which move in transmission lines. Until this moment, all of them have a high weight and cost associated with the equipment and reduced battery autonomy time. In this context, this paper aims to propose the POLIBOT (POwer Lines Inspection roBOT) with low cost and weight, enabling the movement over the lines and an easier installation and remove. Design/methodology/approach The designed robot uses the Profiles Manufacturing Methodology (PMM). The construction of the robot mechanical structure uses modularized aluminum parts built through square profiles. Thus, it’s possible a drastic reduction in production time as well as cost reduction and weight when comparing this method with other manufacturing processes like foundry, for example. For hardware and software systems, the use of free and open source software causes a significant reduction in cost and project execution time. The benefits of using open source systems are immeasurable, both from academic and industrial applications. Findings The POLIBOT platform is one solution to the problem of inspection in power lines. With this robot, more lines are maintained with lower time. In its constructive aspect, the robotic mechanism is designed using principles of bioengineering. The use of this principle was successful, considering that obstacle transposition is performed with stability and low energy consumption. Research limitations/implications The suggestion for future researches is to replace the battery for solar energy and construction in polymeric material to avoid high magnetic fields. Practical implications The commercial application is evident because manual inspections are inefficient, very expensive and dangerous. Thus, it is growing the number of researches that develop mechatronics systems for this kind of inspection. Social implications The impact is the reduction of accidents because the present procedure requires precision of movements, where the pilot and electrical technician are close to high electrical and magnetic fields. In addition, for some tasks, the worker has to walk on the line to reach some important points. Thus, those tasks involve high risk of death. Originality/value The PMM methodology represents an innovation to the state of the art because others robotic mechanisms proposed for inspection tasks present total structure mass between 50 and 100 kg and POLIBOT has only 9 kg. Other fact is its price for implementation as this robot used the robot operating system (ROS) framework, what dispense the use of licenses. Other important features are that the robot performs the tasks autonomously, which reduces errors introduced by the operator and its low manufacturing cost as compared with other projects.
This work presents a comparative and descriptive study of numerical control machines solutions using Linux and Windows operating systems, used for the retrofitting of two similar models of old industrial robots, using controllers based on Computer Numerical Control (CNC). Federal University of Minas Gerais (UFMG) and University of Brasilia (UnB) adopted two different softwares, including the robot kinematics model and the generation of joint signal control. Furthermore, this article proposes a comparative study of the two open architecture controllers' implementation advantages and CAD/CAM integration option, by describing and analyzing each academic solution and choosing the best alternative controller to implement the retrofitting technique for old industrial robots. The comparative study validated the developed generic robot retrofitting methodology, which can be considered as the work's greatest contribution, as well as providing the open-source project, hardware and software, for ASEA IRB6-S2 Robot retrofitting. The proposed methodology is composed by a set of methods and activities described through an IDEF0 (Icam DEFinition for Function Modeling) model, which can be applied to the retrofitting of any industrial robot with serial or parallel kinematics, which guides the developer in five steps associated with the hardware and software specification for a desired robotic platform implementation as a custom solution based on LinuxCNC system.
The present research aims to model, simulate and implement a new hybrid control approach based on a combination of proportional integral derivative (PID) Controller and Model Reference Adaptive Controller (MRAC), in which Lyapunov’s theory is used to ensure asymptotic stability to control a two degrees of freedom (DoF) manipulator driven by McKibben’s artificial pneumatic muscles. The MRAC controller works as a nonlinearity compensator and PID controller works during the transient period, as the MRAC performs poorly in this regime. This new approach is entitled Hybrid Model Reference Adaptive Controller (H-MRAC) and it has an unprecedented topological structure based on three terms. The feedforward term acts in disturbances rejection, the derivative term in oscillations damping and the feedback term acts in error convergence to zero. In this article, a control system dedicated to pneumatic manipulators was developed. As a result, proof of asymptotic convergence was performed for the proposed topological approach, which was validated on a two DoF manipulator. The proposed mechanism satisfactorily met the ISO/TS 15066 standard, and the position tracking obtained a global error of 37.69% and 51.01% smaller than found in the literature examples, entitled MRAC and A-PID, respectively, for simulations and 37.46% and 30.25% for experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.