Most eukaryotic genomes contain substantial portions of repetitive DNA sequences. These are located primarily in highly compacted heterochromatin and, in many cases, are one of the most abundant components of the sex chromosomes. In this sense, the anuran Proceratophrys boiei represents an interesting model for analyses on repetitive sequences by means of cytogenetic techniques, since it has a karyotype with large blocks of heterochromatin and a ZZ/ZW sex chromosome system. The present study describes, for the first time, families of satellite DNA (satDNA) in the frog P. boiei. Its genome size was estimated at 1.6 Gb, of which 41% correspond to repetitive sequences, including satDNAs, rDNAs, transposable elements, and other elements characterized as non-repetitive. The satDNAs were mapped by FISH in the centromeric and pericentromeric regions of all chromosomes, suggesting a possible involvement of these sequences in centromere function. SatDNAs are also present in the W sex chromosome, occupying the entire heterochromatic area, indicating a probable contribution of this class of repetitive DNA to the differentiation of the sex chromosomes in this species. This study is a valuable contribution to the existing knowledge on repetitive sequences in amphibians. We show the presence of repetitive DNAs, especially satDNAs, in the genome of P. boiei that might be of relevance in genome organization and regulation, setting the stage for a deeper functional genome analysis of Proceratophrys.
Small nuclear RNA (snRNA) is a class of molecules involved in the processing of pre-mRNA and in regulatory cell processes. snRNAs are always associated with a set of specific proteins. The complexes are referred to as small nuclear ribonucleoproteins, and spliceosome U RNAs are their most common snRNA components. The repetitive sequences of U snDNAs have been cytogenetically mapped in several species of Arthropoda, fishes, and mammals; however, their distribution remains unknown in amphibians. Here, we show results of FISH mapping of U2 snDNA repetitive sequences in species of the amphibian genus <i>Leptodactylus</i> to reveal the distribution patterns of this sequence in their karyotypes. The probe hybridized in the metacentric chromosome pair 6 in <i>Leptodactylus fuscus</i>, <i>L. gracilis</i>, <i>L. latrans</i>, <i>L. chaquensis</i>, <i>L. petersii</i>, <i>L. podicipinus</i>, and <i>L. brevipes</i>. A different pattern was observed in <i>L. labyrinthicus</i> with hybridization signals in 4 chromosome pairs. The same localization of U2 gene sequences in most of the species analyzed suggests a relatively conserved pattern and a similarity of the chromosome 6 among these species of <i>Leptodactylus</i>.
In this study, we analyzed the karyotype of Salvator merianae (Teiidae) from the Brazilian semiarid region using different cytogenetic markers. Chromosomes were examined by classical (Giemsa and AgNOR staining) and molecular (FISH with ribosomal, telomeric, and microsatellite probes) cytogenetic approaches. S. merianae showed a diploid chromosome number of 2n = 38 (10 biarmed macrochromosomes + 28 microchromosomes). No sex-linked chromosome heteromorphisms were observed. Clusters of 18S/28S rDNA were localized in the terminal region of the long arm of pair 2. In addition to the typical telomeric signals, (TTAGGG)n repeats were detected in the pericentromeric region of some macrochromosome pairs, which might indicate the occurrence of chromosomal rearrangements via chromosome fusions. Hybridization signals of the microsatellite probes (GA)n, (GAA)n, and (GAG)n were uniformly distributed across all chromosomes, while (CA)n, (CAA)n, and (CAC)n produced brighter signals in the telomeric and pericentromeric regions of specific chromosome pairs. The comparison with previous studies demonstrates that, despite the wide distribution of S. merianae, the macrostructure organization of the karyotype remained unchanged, showing stability in diploid number and chromosome morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.