Oxygen diffusion coefficients in pure and doped ZnO polycrystals were determined by means of the gas-solid isotope exchange method using the isotope 18O as oxygen tracer. The diffusion experiments were performed from 900 to 1000 °C, under an oxygen pressure of 10(5) Pa. After the diffusion annealings, the 18O diffusion profiles were determined by secondary ion mass spectrometry. The results of the experiments show that oxygen diffusion in Li-doped ZnO is similar to the oxygen diffusion in pure ZnO, while in Al-doped ZnO the oxygen diffusion is enhanced in relation to that observed in pure ZnO, in the same experimental conditions. Based on these results is proposed an interstitial mechanism for oxygen diffusion in ZnO. Moreover, it was found that oxygen grain-boundary diffusion is ca. 3 to 4 orders of magnitude greater than oxygen volume diffusion in pure and doped ZnO, which means that the grain-boundary is a fast path for oxygen diffusion in ZnO
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.