Hydrogen sulfide (H(2)S) is a gaseous neuromodulator endogenously produced in the brain by the enzyme cystathionine β-synthase (CBS). We tested the hypothesis that H(2)S acts within the anteroventral preoptic region of the hypothalamus (AVPO) modulating the production of prostaglandin (PG) E(2) (the proximal mediator of fever) and cyclic AMP (cAMP). To this end, we recorded deep body temperature (Tb) of rats before and after pharmacological modulation of the CBS-H(2)S system combined or not with lipopolysaccharide (LPS) exposure, and measured the levels of H(2)S, cAMP, and PGE(2) in the AVPO during systemic inflammation. Intracerebroventricular (icv) microinjection of aminooxyacetate (AOA, a CBS inhibitor; 100 pmol) did not affect basal PGE(2) production and Tb, but enhanced LPS-induced PGE(2) production and fever, indicating that endogenous H(2)S plays an antipyretic role. In agreement, icv microinjection of a H(2)S donor (Na(2)S; 260 nmol) reduced the LPS-induced PGE(2) production and fever. Interestingly, we observed that the AVPO levels of H(2)S were decreased following the immunoinflammatory challenge. Furthermore, fever was associated with decreased levels of AVPO cAMP and increased levels of AVPO PGE(2). The LPS-induced decreased levels of cAMP were reduced to a lesser extent by the H(2)S donor. The LPS-induced PGE(2) production was potentiated by AOA (the CBS inhibitor) and inhibited by the H(2)S donor. Our data are consistent with the notion that the gaseous messenger H(2)S synthesis is downregulated during endotoxemia favoring PGE(2) synthesis and lowering cAMP levels in the preoptic hypothalamus.
Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.
These data provide solid evidence that AVPO H2 S production is stimulated by hypoxia, and this gaseous messenger exerts an inhibitory modulation of the hypoxic ventilatory response. It is probable that the H2 S modulation of hypoxia-induced hyperventilation is at least in part in proportion to metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.