It is commonly thought that the longer the time since last earthquake, the larger the next earthquake's slip will be. But this logical predictor of earthquake size, unsuccessful for large earthquakes on a strike-slip fault, fails also with the giant 1960 Chile earthquake of magnitude 9.5 (ref. 3). Although the time since the preceding earthquake spanned 123 years (refs 4, 5), the estimated slip in 1960, which occurred on a fault between the Nazca and South American tectonic plates, equalled 250-350 years' worth of the plate motion. Thus the average interval between such giant earthquakes on this fault should span several centuries. Here we present evidence that such long intervals were indeed typical of the last two millennia. We use buried soils and sand layers as records of tectonic subsidence and tsunami inundation at an estuary midway along the 1960 rupture. In these records, the 1960 earthquake ended a recurrence interval that had begun almost four centuries before, with an earthquake documented by Spanish conquistadors in 1575. Two later earthquakes, in 1737 and 1837, produced little if any subsidence or tsunami at the estuary and they therefore probably left the fault partly loaded with accumulated plate motion that the 1960 earthquake then expended.
Globally, instrumentally based assessments of tsunamigenic potential of subduction zones have underestimated the magnitude and frequency of great events because of their short time record. Historical and sediment records of large earthquakes and tsunamis have expanded the temporal data and estimated size of these events. instrumental records suggests that the Mexican Subduction earthquakes produce relatively small tsunamis, however historical records and now geologic evidence suggest that great earthquakes and tsunamis have whipped the Pacific coast of Mexico in the past. the sediment marks of centuries old-tsunamis validate historical records and indicate that large tsunamigenic earthquakes have shaken the Guerrero-oaxaca region in southern Mexico and had an impact on a bigger stretch of the coast than previously suspected. We present the first geologic evidence of great tsunamis near the trench of a subduction zone previously underestimated as potential source for great earthquakes and tsunamis. Two sandy tsunami deposits extend over 1.5 km inland of the coast. The youngest tsunami deposit is associated with the 1787 great earthquake, M 8.6, producing a giant tsunami that poured over the coast flooding 500 km alongshore the Mexican Pacific coast and up to 6 km inland. The oldest event from a less historically documented event occurred in 1537. The 1787 earthquake, and tsunami and a probable predecessor in 1537, suggest a plausible recurrence interval of 250 years. We prove that the common believe that great tsunamis do not occur on the Mexican Pacific coast cannot be sustained. Worldwide, instrumentally based assessments of tsunamigenic potential of subduction zones have underestimated the magnitude and frequency of great events 1-3 , to some extent because great earthquakes and tsunamis are infrequent 1-5 and instrumental seismic data are relatively short. Historical and sediment records of large earthquakes and tsunamis have expanded the temporal data and estimated size of these events but mainly where direct observations of great tsunamis have been possible 1,3,4,6. This means that little is still known of great earthquakes and tsunami generation potential of other subduction zones 7-11. Additionally, at the centre of the problem is still the question as to whether subduction zones, despite their relatively short instrumentally seismic history, could generate great earthquakes and tsunamis. We reveal the first geologic evidence, and validate historical records, of great tsunamis and earthquakes near the trench of the Mexican subduction zone previously underestimated as potential source for great earthquakes and tsunamis. Here, we focus on the Corralero coastal plain, in southwestern Mexico, where a great earthquake, M 8.6, triggered a giant tsunami that poured over the coast of Oaxaca, Guerrero, and Chiapas, flooding 500 km along open
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.