The 5′ leader of the human immunodeficiency virus type 1 (HIV-1) genomic RNA harbors an internal ribosome entry site (IRES) that is functional during the G2/M phase of the cell cycle. Here we show that translation initiation mediated by the HIV-1 IRES requires the participation of trans-acting cellular factors other than the canonical translational machinery. We used ‘standard’ chemical and enzymatic probes and an ‘RNA SHAPE’ analysis to model the structure of the HIV-1 5′ leader and we show, by means of a footprinting assay, that G2/M extracts provide protections to regions previously identified as crucial for HIV-1 IRES activity. We also assessed the impact of mutations on IRES function. Strikingly, mutations did not significantly affect IRES activity suggesting that the requirement for pre-formed stable secondary or tertiary structure within the HIV-1 IRES may not be as strict as has been described for other viral IRESes. Finally, we used a proteomic approach to identify cellular proteins within the G2/M extracts that interact with the HIV-1 5′ leader. Together, data show that HIV-1 IRES-mediated translation initiation is modulated by cellular proteins.
Human immunodeficiency virus type 1 (HIV-1) co-opts host proteins and cellular machineries to its advantage at every step of the replication cycle. Here we show that HIV-1 enhances heterogeneous nuclear ribonucleoprotein (hnRNP) A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm. The latter was dependent on the nuclear export of the unspliced viral genomic RNA (vRNA) and to alterations in the abundance and localization of the FG-repeat nuclear pore glycoprotein p62. hnRNP A1 and vRNA remain colocalized in the cytoplasm supporting a post-nuclear function during the late stages of HIV-1 replication. Consistently, we show that hnRNP A1 acts as an internal ribosomal entry site trans-acting factor up-regulating internal ribosome entry site-mediated translation initiation of the HIV-1 vRNA. The up-regulation and cytoplasmic retention of hnRNP A1 by HIV-1 would ensure abundant expression of viral structural proteins in cells infected with HIV-1.During the late stages of the HIV-1 3 replication cycle, the full-length HIV-1 viral RNA (vRNA) must be exported from the nucleus and both translated and packaged into new viral particles (1). The orchestration of these events is directed by a diversity of viral and host proteins that interact with each other and with the vRNA to form HIV-1 ribonucleoprotein (RNP) complexes that originate in the nucleus and persist in the cytoplasm (2). Investigations into the composition and functions of the HIV-1 RNP will reveal new information about innate immunity as well as identify new potential therapeutic targets (3-6).The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a predominantly nuclear protein engaged in a number of cellular and viral RNPs for RNA-processing activities, including splicing regulation, nuclear export, microRNA processing, mRNA stability, telomere maintenance, and IRES-mediated translation initiation (7-12). What enables hnRNP A1 to have such broad functions in RNA metabolism is its ability to bind both nuclear and cytoplasmic RNAs (10). In addition to its well characterized role in nuclear RNA processing, hnRNP A1 binds to purine-rich sequences of mRNAs for mRNA turnover and translation (13,14). Close examination of the HIV-1 vRNA reveals many AG-and AU-rich sequences closely resembling hnRNP A1 binding motifs (15). In fact, hnRNP A1 binds to a number of sequences on the HIV-1 vRNA such as the cis-acting repressive sequences, instability elements, and exonic splicing silencer elements, and indeed, hnRNP A1 is implicated in the fate of HIV-1 RNA, including splicing regulation, nucleocytoplasmic export, and cytoplasmic stability (16 -21).Our previous work demonstrated that hnRNP A1 efficiently immunoprecipitated with the HIV-1 vRNA (22) and that siRNA-mediated knockdown of hnRNP A1 caused a dramatic decrease in HIV-1 structural protein, pr55Gag (herein termed Gag) expression and virus production with little effect on steady-state levels of the three HIV-1 RNA species (i.e. 9-, 4-, and 2-kb RNAs) (23). In this work, we show that HIV-1 ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.