Synthetically derived peptide-based biomaterials are in many instances capable of mimicking the structure and function of their full-length endogenous counterparts. Combine this with the fact that short mimetic peptides are easier to produce when compared to full length proteins, show enhanced processability and ease of modification, and have the ability to be prepared under well-defined and controlled conditions; it becomes obvious why there has been a recent push to develop regenerative biomaterials from these molecules. There is increasing evidence that the incorporation of peptides within regenerative scaffolds can result in the generation of structural recognition motifs that can enhance cell attachment or induce cell signaling pathways, improving cell infiltration or promote a variety of other modulatory biochemical responses. By highlighting the current approaches in the design and application of short mimetic peptides, we hope to demonstrate their potential in soft-tissue healing while at the same time drawing attention to the advances made to date and the problems which need to be overcome to advance these materials to the clinic for applications in heart, skin, and cornea repair.
Phthalocyanines are macrocyclic compounds that can be employed as photosensitizers in the treatment of various infections and diseases, as well as in photodynamic therapy. Nevertheless, a disadvantage for the clinical application of these compounds is their strong tendency to form oligomers (especially dimers), a phenomenon that reduces their efficiency as photosensitizers. In the present contribution, we have studied the photophysical and photochemical properties of ZnPc and ZnF(16)Pc in an organic solvent (THF) and liposomal formulations (DMPC, DPPC and DSPC). Our results show that dye incorporation into liposomes decreases its aggregation degree, as revealed by absorption spectra, triplet quantum yield, and singlet oxygen quantum yield measurements. Additionally, we studied the photodynamic activity of both phthalocyanines in liposomal formulation on human cervical carcinoma (HeLa) cells. For ZnF(16)Pc the photophysical behavior and phototoxicity in vitro correlate with the aggregation degree. The dimers are not photoactive and the photochemistry of ZnF(16)Pc depends of the fraction present as monomer. On the other hand, ZnPc aggregation is minimal and its photophysical and photochemical properties are similar in the three liposomes studied. Nevertheless, its phototoxicity in vitro is liposome dependent.
This report presents evidence that ibuprofen interacts with red cell membranes as follows: a) in scanning electron microscopy (SEM) studies on human erythrocytes induced shape changes at a concentration as low as 10μM; b) in isolated unsealed human erythrocyte membranes (IUM) induced mild increase in the water content or in their molecular dynamics at the hydrophobic-hydrophilic interphase, while a corresponding ordering decrease at the deep phospholipids acyl chain level; c) at physiological temperature (37°C), 300μM ibuprofen induced a significant increase in the generalized polarization (GP) of dimyristoylphosphatidylcholine (DMPC) large unilamellar vesicles (LUV), an indication that ibuprofen molecules locate in the head polar group region of DMPC; d) X-ray diffraction studies showed that ibuprofen concentrations≥300μM induced increasing structural perturbation to DMPC bilayers; e) differential scanning calorimetry (DSC) data showed that ibuprofen was able to alter the cooperativity of DMPC phase transition in a concentration-dependent manner, to destabilize the gel phase and that ibuprofen did not significantly perturb the organization of the lipid hydrocarbon chains. Additionally, the effect on the viability of both human promyelocytic leukemia HL-60 and human cervical carcinoma HeLa cells was studied.
The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. We found that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed histone H3 lysine 27 monomethylation in plants depends on H3.1, TSK, and DNA polymerase theta (Pol θ). This work reveals an H3.1-specific function during replication and a common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone monomethyltransferases and reading of the H3.1 variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.