SED meeting for their helpful comments. The usual disclaimer applies. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
The usual disclaimer applies. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
In this paper we show that temperature is an aggregate risk factor that adversely affects economic growth. Our argument is based on evidence from global capital markets which shows that the covariance between country equity returns and temperature (i.e., temperature betas) contains sharp information about the crosscountry risk premium; countries closer to the Equator carry a positive temperature risk premium which decreases as one moves farther away from the Equator. The differences in temperature betas mirror exposures to aggregate growth rate risk, which we show is negatively impacted by temperature shocks. That is, portfolios with larger exposure to risk from aggregate growth also have larger temperature betas; hence, a larger risk premium. We further show that increases in global temperature have a negative impact on economic growth in countries closer to the Equator, while its impact is negligible in countries at high latitudes. Consistent with this evidence, we show that there is a parallel between a country's distance to the Equator and the economy's dependence on climate sensitive sectors; in countries closer to the Equator industries with a high exposure to temperature are more prevalent. We provide a Long-Run Risks based model that quantitatively accounts for cross-sectional differences in temperature betas, its link to expected returns, and the connection between aggregate growth and temperature risks.
This article makes a contribution towards understanding the impact of temperature fluctuations on the economy and financial markets. We present a long-run risks model with temperature related natural disasters. The model simultaneously matches observed temperature and consumption growth dynamics, and key features of financial markets data. We use this model to evaluate the role of temperature in determining asset prices, and to compute utility-based welfare costs as well as dollar costs of insuring against temperature fluctuations. We find that the temperature related utility-costs are about 0.78% of consumption, and the total dollar costs of completely insuring against temperature variation are 2.46% of world GDP. If we allow for temperature-triggered natural disasters to impact growth, insuring against temperature variation raise to 5.47% of world GDP. We show that the same features, long-run risks and recursive-preferences, that account for the risk-free rate and the equity premium puzzles also imply that temperature-related economic costs are important. Our model implies that a rise in global temperature lowers equity valuations and raises risk premiums.
A number of researchers have recently argued that the growth of the shadow banking system in the years preceding the recent U.S. financial crisis was driven by rising demand for "money-like" claims-short-term, safe instruments (STSI)-from institutional investors and nonfinancial firms. These instruments carry a money premium that lowers their yields. While government securities are an important part of the supply of STSI, financial intermediaries also take advantage of this money premium when they issue certain types of low-risk, short-term debt, such as asset-backed commercial paper or repo. In this paper, we take the demand for STSI as given and consider the extent to which central banks can improve financial stability and manage maturity transformation by the private sector through their ability to affect the public supply of STSI. The first part of the paper provides new evidence that complements the existing literature on two key ingredients that are necessary for there to be a role for policy: the extent to which public short-term debt and private short-term debt might be substitutes, and the relationship between the money premium and the supply of STSI. The second part of the paper then builds on this evidence and discusses potential ways a central bank could use its balance sheet and monetary policy implementation framework to affect the quantity and mix of short-term liquid assets that will be available to financial market participants. 1 We would like to thank James Clouse, Seth Carpenter, William English, and Nellie Liang for helpful comments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.