; for the COALITION COVID-19 Brazil III Investigators IMPORTANCE Acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19) is associated with substantial mortality and use of health care resources. Dexamethasone use might attenuate lung injury in these patients. OBJECTIVE To determine whether intravenous dexamethasone increases the number of ventilator-free days among patients with COVID-19-associated ARDS. DESIGN, SETTING, AND PARTICIPANTS Multicenter, randomized, open-label, clinical trial conducted in 41 intensive care units (ICUs) in Brazil. Patients with COVID-19 and moderate to severe ARDS, according to the Berlin definition, were enrolled from April 17 to June 23, 2020. Final follow-up was completed on July 21, 2020. The trial was stopped early following publication of a related study before reaching the planned sample size of 350 patients. INTERVENTIONS Twenty mg of dexamethasone intravenously daily for 5 days, 10 mg of dexamethasone daily for 5 days or until ICU discharge, plus standard care (n =151) or standard care alone (n = 148). MAIN OUTCOMES AND MEASURES The primary outcome was ventilator-free days during the first 28 days, defined as being alive and free from mechanical ventilation. Secondary outcomes were all-cause mortality at 28 days, clinical status of patients at day 15 using a 6-point ordinal scale (ranging from 1, not hospitalized to 6, death), ICU-free days during the first 28 days, mechanical ventilation duration at 28 days, and Sequential Organ Failure Assessment (SOFA) scores (range, 0-24, with higher scores indicating greater organ dysfunction) at 48 hours, 72 hours, and 7 days. RESULTS A total of 299 patients (mean [SD] age, 61 [14] years; 37% women) were enrolled and all completed follow-up. Patients randomized to the dexamethasone group had a mean 6.6 ventilator-free days (95% CI, 5.0-8.2) during the first 28 days vs 4.0 ventilator-free days (95% CI, 2.9-5.4) in the standard care group (difference, 2.26; 95% CI, 0.2-4.38; P = .04). At 7 days, patients in the dexamethasone group had a mean SOFA score of 6.1 (95% CI, 5.5-6.7) vs 7.5 (95% CI, 6.9-8.1) in the standard care group (difference, −1.16; 95% CI, −1.94 to −0.38; P = .004). There was no significant difference in the prespecified secondary outcomes of all-cause mortality at 28 days, ICU-free days during the first 28 days, mechanical ventilation duration at 28 days, or the 6-point ordinal scale at 15 days. Thirty-three patients (21.9%) in the dexamethasone group vs 43 (29.1%) in the standard care group experienced secondary infections, 47 (31.1%) vs 42 (28.3%) needed insulin for glucose control, and 5 (3.3%) vs 9 (6.1%) experienced other serious adverse events. CONCLUSIONS AND RELEVANCE Among patients with COVID-19 and moderate or severe ARDS, use of intravenous dexamethasone plus standard care compared with standard care alone resulted in a statistically significant increase in the number of ventilator-free days (days alive and free of mechanical ventilation) over 28 days.
IntroductionResidual inflammation at ICU discharge may have impact upon long-term mortality. However, the significance of ongoing inflammation on mortality after ICU discharge is poorly described. C-reactive protein (CRP) and albumin are measured frequently in the ICU and exhibit opposing patterns during inflammation. Since infection is a potent trigger of inflammation, we hypothesized that CRP levels at discharge would correlate with long-term mortality in septic patients and that the CRP/albumin ratio would be a better marker of prognosis than CRP alone.MethodsWe evaluated 334 patients admitted to the ICU as a result of severe sepsis or septic shock who were discharged alive after a minimum of 72 hours in the ICU. We evaluated the performance of both CRP and CRP/albumin to predict mortality at 90 days after ICU discharge. Two multivariate logistic models were generated based on measurements at discharge: one model included CRP (Model-CRP), and the other included the CRP/albumin ratio (Model-CRP/albumin).ResultsThere were 229 (67%) and 111 (33%) patients with severe sepsis and septic shock, respectively. During the 90 days of follow-up, 73 (22%) patients died. CRP/albumin ratios at admission and at discharge were associated with a poor outcome and showed greater accuracy than CRP alone at these time points (p = 0.0455 and p = 0.0438, respectively). CRP levels and the CRP/albumin ratio were independent predictors of mortality at 90 days (Model-CRP: adjusted OR 2.34, 95% CI 1.14–4.83, p = 0.021; Model-CRP/albumin: adjusted OR 2.18, 95% CI 1.10–4.67, p = 0.035). Both models showed similar accuracy (p = 0.2483). However, Model-CRP was not calibrated.ConclusionsResidual inflammation at ICU discharge assessed using the CRP/albumin ratio is an independent risk factor for mortality at 90 days in septic patients. The use of the CRP/albumin ratio as a long-term marker of prognosis provides more consistent results than standard CRP values alone.
The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.
IntroductionContemporary information on mechanical ventilation (MV) use in emerging countries is limited. Moreover, most epidemiological studies on ventilatory support were carried out before significant developments, such as lung protective ventilation or broader application of non-invasive ventilation (NIV). We aimed to evaluate the clinical characteristics, outcomes and risk factors for hospital mortality and failure of NIV in patients requiring ventilatory support in Brazilian intensive care units (ICU).MethodsIn a multicenter, prospective, cohort study, a total of 773 adult patients admitted to 45 ICUs over a two-month period requiring invasive ventilation or NIV for more than 24 hours were evaluated. Causes of ventilatory support, prior chronic health status and physiological data were assessed. Multivariate analysis was used to identifiy variables associated with hospital mortality and NIV failure.ResultsInvasive MV and NIV were used as initial ventilatory support in 622 (80%) and 151 (20%) patients. Failure with subsequent intubation occurred in 54% of NIV patients. The main reasons for ventilatory support were pneumonia (27%), neurologic disorders (19%) and non-pulmonary sepsis (12%). ICU and hospital mortality rates were 34% and 42%. Using the Berlin definition, acute respiratory distress syndrome (ARDS) was diagnosed in 31% of the patients with a hospital mortality of 52%. In the multivariate analysis, age (odds ratio (OR), 1.03; 95% confidence interval (CI), 1.01 to 1.03), comorbidities (OR, 2.30; 95% CI, 1.28 to 3.17), associated organ failures (OR, 1.12; 95% CI, 1.05 to 1.20), moderate (OR, 1.92; 95% CI, 1.10 to 3.35) to severe ARDS (OR, 2.12; 95% CI, 1.01 to 4.41), cumulative fluid balance over the first 72 h of ICU (OR, 2.44; 95% CI, 1.39 to 4.28), higher lactate (OR, 1.78; 95% CI, 1.27 to 2.50), invasive MV (OR, 2.67; 95% CI, 1.32 to 5.39) and NIV failure (OR, 3.95; 95% CI, 1.74 to 8.99) were independently associated with hospital mortality. The predictors of NIV failure were the severity of associated organ dysfunctions (OR, 1.20; 95% CI, 1.05 to 1.34), ARDS (OR, 2.31; 95% CI, 1.10 to 4.82) and positive fluid balance (OR, 2.09; 95% CI, 1.02 to 4.30).ConclusionsCurrent mortality of ventilated patients in Brazil is elevated. Implementation of judicious fluid therapy and a watchful use and monitoring of NIV patients are potential targets to improve outcomes in this setting.Trial registrationClinicalTrials.gov NCT01268410.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.