HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
STONEHENGE is a toolbox designed to evaluate nonlinear vibration-based energy harvesting systems, which demand careful studies regarding their nontrivial behavior. It is composed of an ensemble of codes to study and characterize the dynamic behavior, as well as deal with varieties of physical parameters and excitation. For this, it has six modules, initial value problem, dynamic animation, nonlinear tools, sensitivity analysis, stochastic simulation, and chaos control. A bistable oscillator is used as a benchmark for a vibration harvester. We hope this toolbox can contribute to the development and improvement of old and new generations of nonlinear vibration-based energy harvesting systems.
Chaotic vibrations may appear in nonlinear energy harvesting systems, which can be problematic when using the recovered power, as it may require an extra expenditure of energy to rectify the voltage signal or reduce the harvesting process efficiency when charging the battery. Both cases can derail the energy harvester's functionality. An alternative in this situation is to explore chaos control to stabilize the system dynamics so that the recovered voltage signal is regular and more suitable for use in the applications of interest. This paper address this problem employing an extended delayed feedback method that combines a displacement actuator and a digital controller to implement the control mechanism. The control strategy is mathematically formulated and tested in a bistable energy harvesting system that often operates in a chaotic regime. The controller shows itself capable of stabilizing the chaotic dynamics at a very low energetic cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.