Higher laser power settings (400 and 600 mJ) cause excessive material deterioration, making them unsuitable as surface treatments for zirconia surfaces. Irradiation with 200 mJ provides mild surface alterations, with intermediary features between the effects of air abrasion and higher laser intensities.
Compared to conventional ceramic systems, Yttrium-stabilized tetragonal zirconia (Y-TZP) ceramics have some superior mechanical properties, ensuring a broad application in dentistry. The current study aimed to present relevant information about Y-TZP ceramics gathered from peer-reviewed papers. A search of the English language peer-reviewed literature was conducted using the PubMed database between 1998 and 2008. Articles that did not focus exclusively on the clinical application of Y-TZP ceramic restorations were excluded from further evaluation. Selected papers describe the chief characteristics of zirconia ceramics and important clinical features, especially those related to cementation procedures. The literature shows that, although new substances and equipment for the surface preparation of zirconia ceramics are in development, the most promising luting protocol seems to be the use of air abrasion with aluminum oxide particles (silanated or not), followed by the application of resin cements or surface primers containing special reactive monomers. However, because zirconia ceramics have only recently been developed for dental applications, there is not enough clinical evidence to support any definitive cementation protocol.
he purpose of this study was to evaluate the influence of different surface treatments on composite resin on the microtensile bond strength to a luting resin cement. Two laboratory composites for indirect restorations, Solidex and Targis, and a conventional composite, Filtek Z250, were tested. Forty-eight composite resin blocks (5.0 x 5.0 x 5.0mm) were incrementally manufactured, which were randomly divided into six groups, according to the surface treatments: 1-control, 600-grit SiC paper (C); 2-silane priming (SI); 3-sandblasting with 50 µm Al 2 O 3 for 10s (SA); 4-etching with 10% hydrofluoric acid for 60 s (HF); 5-HF + SI; 6 -SA + SI. Composite blocks submitted to similar surface treatments were bonded together with the resin adhesive Single Bond and Rely X luting composite. A 500-g load was applied for 5 minutes and the samples were light-cured for 40s. The bonded blocks were serially sectioned into 3 slabs with 0.9mm of thickness perpendicularly to the bonded interface (n = 12). Slabs were trimmed to a dumbbell shape and tested in tension at 0.5mm/min. For all composites tested, the application of a silane primer after sandblasting provided the highest bond strength means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.