Within the framework of Information Theory, the existence of correlations between two random variables means that we can obtain information about one of them, just by measuring or observing the other random variable. In certain cases, this kind of relationship allows obtaining information about a variable even when the other is separated by a very large distance, that is, the process of obtaining information is non-local, an example (if not the only) is the quantum entanglement. These features of correlations make it interesting and important to study, classify and quantify them. The correlations are classified into classical correlations and quantum correlations, in addition they are quantified through the mutual information. Here we will present a natural way to define classical mutual information and then we will generalize it to the quantum case. Furthermore, every term in the definitions of mutual information will be interpreted using the concepts of classical and quantum entropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.