One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.
It is a well-established fact that exercise increases pro-oxidants and favors oxidative stress; however, this phenomenon has been poorly studied in human lungs. Pro-oxidative generation (H(2)O(2), NO(2) (-)), lipid peroxidation markers (MDA), and inflammation (pH) in exhaled breath condensate (EBC) have been determined through data from 10 active subjects who ran 10 km; samples were obtained immediately before, at 20, and at 80 min post-exertion. In EBC, the concentration of H(2)O(2) at 80 min post-exertion was increased. NO(2) (-) concentration showed a tendency to increase at 80 min post-exertion, with no variations in MDA and pH. No variations of NO(2) (-) were found in plasma, while there was an increase of NO(2) (-) at 80 min post-exertion in the relation between EBC and plasma. NO(2) (-) in EBC did not correlate to plasmatic NO(2) (-), while it did correlate directly with H(2)O(2) in EBC, suggesting a localized origin for the exercise-related NO(2) (-) increase in EBC. MDA in plasma did not increase nor correlate with MDA in EBC. In conclusion, high-intensity exercise increases lung-originated pro-oxidants in non-athlete subjects with no evidence of early lipid peroxidation and changes in the pH value in EBC.
The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.