Fibromyalgia is a rheumatological disorder that causes chronic pain and other symptomatic conditions such as depression and anxiety. Despite its relevance, the disease still presents a complex diagnosis where the doctor needs to have a correct clinical interpretation of the symptoms. In this context, it is valid to study tools that assist in the screening of this disease, using chemical work techniques such as mass spectroscopy. In this study, an analytical method is proposed to detect individuals with fibromyalgia (n = 20, 10 control samples and 10 samples with fibromyalgia) from blood plasma samples analyzed by mass spectrometry with paper spray ionization and subsequent multivariate classification of the spectral data (unsupervised and supervised), in addition to the treatment of selected variables with possible associations with metabolomics. Exploratory analysis with principal component analysis (PCA) and supervised analysis with successive projections algorithm with linear discriminant analysis (SPA-LDA) showed satisfactory results with 100% accuracy for sample prediction in both groups. This demonstrates that this combination of techniques can be used as a simple, reliable and fast tool in the development of clinical diagnosis of Fibromyalgia.
This study performs a chemical investigation of blood plasma samples from patients with and without fibromyalgia, combined with some of the symptoms and their levels of intensity used in the diagnosis of this disease. The symptoms evaluated were: visual analogue pain scale (VAS); fibromyalgia impact questionnaire (FIQ); Hamilton anxiety rating scale (HAM); Tampa Scale for Kinesiophobia (TAMPA); quality of life Questionnaire—physical and mental health (QL); and Pain Catastrophizing Scale (CAT). Plasma samples were analyzed by paper spray ionization mass spectrometry (PSI-MS). Spectral data were organized into datasets and related to each of the symptoms measured. The datasets were submitted to multivariate classification using supervised models such as principal component analysis with linear discriminant analysis (PCA-LDA), successive projections algorithm with linear discriminant analysis (SPA-LDA), genetic algorithm with linear discriminant analysis (GA-LDA) and their versions with quadratic discriminant analysis (PCA/SPA/GA-QDA) and support vector machines (PCA/SPA/GA-SVM). These algorithm combinations were performed aiming the best class separation. Good discrimination between the controls and fibromyalgia samples were observed using PCA-LDA, where the spectral data associated with the CAT symptom achieved 100% classification sensitivity, and associated with the VAS symptom achieved 100% classification specificity, with both symptoms at the moderate level of intensity. The spectral variable at 579 m/z was found to be substantially significant for classification according to the PCA loadings. According to the human metabolites database, this variable can be associated with a LysoPC compound, which comprises a class of metabolites already evidenced in other studies for fibromyalgia diagnosis. This study proposed an investigation of spectral data combined with clinical data to compare the classification ability of different datasets. The good classification results obtained confirm this technique is as a good analytical tool for the detection of fibromyalgia, and provides theoretical support for other studies about fibromyalgia diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.