COVID‐19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID‐19. Here we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS‐CoV‐2 infected Syrian hamsters. We show that SARS‐CoV‐2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real‐time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro . SARS‐CoV‐2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID‐19, as memory loss, confusion, and cognitive impairment.
Coronaviruses belong to a well-known family of enveloped RNA viruses and are the causative agent of the common cold. Although the seasonal coronaviruses do not pose a threat to human life, three members of this family, i.e., SARS-CoV, MERS-CoV and recently, SARS-CoV2, may cause severe acute respiratory syndrome and lead to death. Unfortunately, COVID-19 has already caused more than 4.4 million deaths worldwide. Although much is better understood about the immunopathogenesis of the lung disease, important information about systemic disease is still missing, mainly concerning neurological parameters. In this context, we sought to evaluate immunometabolic changes using in vitro and in vivo models of hamsters infected with SARS-CoV-2. Here we show that, besides infecting hamsters astrocytes, SARS-CoV-2 induces changes in protein expression and metabolic pathways involved in carbon metabolism, glycolysis, mitochondrial respiration, and synaptic transmission. Interestingly, many of the differentially expressed proteins are concurrent with proteins that correlate with neurological diseases, such as Parkinsons's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. Metabolic analysis by high resolution real-time respirometry evidenced hyperactivation of glycolysis and mitochondrial respiration. Further metabolomics analysis confirmed the consumption of many metabolites, including glucose, pyruvate, glutamine, and alpha ketoglutarate. Interestingly, we observed that glutamine was significantly reduced in infected cultures, and the blockade of mitochondrial glutaminolysis significantly reduced viral replication and pro-inflammatory response. SARS-CoV-2 was confirmed in vivo as hippocampus, cortex, and olfactory bulb of intranasally infected hamsters were positive for viral genome several days post-infection. Altogether, our data reveals important changes in overall protein expression, mostly of those related to carbon metabolism and energy generation, causing an imbalance in important metabolic molecules and neurotransmitters. This may suggest that some of the neurological features observed during COVID-19, as memory and cognitive impairment, may rely on altered energetic profile of brain cells, as well as an unbalanced glutamine/glutamate levels, whose importance for adequate brain function is unquestionable.
Purpose of Review Pathogenic thermal-dimorphic fungi are endemic in certain regions and can cause from subclinical respiratory infections to systemic mycoses. These pathogens are associated with high rates of mortality and high morbidity, infecting thousands of people each year. In addition, the toxicity and high costs of treatment of systemic mycoses are great public health concerns. In the present review, we address recent studies that refer to the development of vaccines against systemic mycoses by thermally dimorphic fungi. Recent Findings Members of the genus Paracoccidioides, Histoplasma, Coccidioides, and Blastomyces are thermal-dimorphic fungi, and the difficulty in obtaining new and selective antifungal therapies led to the increase of research involving development of new options of immune therapy. Immunotherapeutic strategies and new vaccines have been focused on protecting populations at risk and assisting in antifungal treatment, reducing the time of therapy and toxicity. Peptides, purified antigens, DNA therapy, dendritic cells, in addition to the use of attenuated yeast cells and monoclonal antibodies, have been explored as potential vaccines. Summary In recent years, despite advances in the search for new antifungal therapies with a focus on the development of prophylactic and/or therapeutic vaccines, few prototypes of successful treatment have emerged from clinical trials. It is clear, however, that all information from these studies, concerning the pathogen-host relationship and the understanding of the immune response to these microorganisms, are indispensable for the development of new treatment options aiming at reducing the morbidity and mortality of populations at risk for these infections.
The peptide P10 is a vaccine candidate for Paracoccidioidomycosis, a systemic mycosis caused by fungal species of the genus Paracoccidioides spp. We have previously shown that peptide P10 vaccination, in the presence of several different adjuvants, induced a protective cellular immune response mediated by CD4+ Th1 lymphocytes that was associated with the increased production of IFN-γ in mice challenged with a virulent isolate of Paracoccidoides brasiliensis. Cationic liposomes formulated with dioctadecyldimethylammonium and trehalose dibehenate (DDA/TDB, termed also CAF01–cationic adjuvant formulation) have been developed for safe administration in humans and CAF01 liposomes are utilized as an adjuvant for modulating a robust Th1/Th17 cellular response. We evaluated the efficacy of the adsorption of peptide P10 to CAF01 cationic liposomes and used the generated liposomes to vaccinate C57Bl/6 mice infected with P. brasiliensis. Our results showed that P10 was efficiently adsorbed onto CAF01 liposomes. The vaccination of infected mice with cationic liposomes formulated with DDA/TDB 250/50 µg/mL and 20 µg of P10 induced an effective cellular immune response with increased levels of Th17 cytokines, which correlated with significant decreases in the fungal burdens in lungs and protective granulomatous tissue responses. Hence, cationic liposomes of DDA/TDB 250/50 µg/mL with 20 µg of P10 are a promising therapeutic for safely and effectively improving the treatment of paracoccidioidomycosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.