Ceratitis capitata (Wiedemann, 1824) is the main insect pest of fruits worldwide. The objective of this study was to evaluate the toxicity and residual effects of the ready-to-use toxic baits Success 0.02CB (0.24 g of active ingredient [a.i.] per liter of spinosad) and Gelsura (6 g of a.i./liter of alpha-cypermethrin) and to compare them with other food lures containing spinosad and malathion mixed with hydrolyzed protein (Biofruit 5% and Flyral 1.25%), Anamed without dilution or sugarcane molasses (7%) against adult C. capitata in laboratory and greenhouse trials. Ceratitis capitata adults were highly susceptible to all toxic bait formulations (mortality > 80%) until 96 h after exposure. The lowest LT50 (hours) of toxic baits were 2.32 (Gelsura at 4,000 mg/liter), 4.26 (Gelsura at 2,000 mg/liter), 4.28 (Anamed + malathion) and 4.89 (sugarcane molasses + malathion), while formulations containing spinosad (Biofruit, Flyral, Anamed and Success 0.02CB) showed LT50 of approximately 11 h. Without rain, Gelsura (2,000 mg/liter) and all spinosad formulations provided mortality superior to 80% 14 d after application. Gelsura and Anamed + spinosad showed higher resistance to a 5-mm simulated rain, similar to Anamed + malathion, while the other formulations had its efficacy decreased. All toxic baits were effective on adult C. capitata in residual experiments without rain while Anamed + spinosad caused high adult mortality after 5 to 25 mm rains. Gelsura and Anamed + spinosad can be used to replace toxic baits containing malathion for C. capitata population management.
Male and female moth catches of Grapholita molesta (Busck) in traps were evaluated in stone and pome fruit orchards untreated or treated with sex pheromones for mating disruption in Uruguay, Argentina, Chile, USA, and Italy from 2015 to 2017. Trials evaluated various blends loaded into either membrane cup lures or septa. Membrane lures were loaded with terpinyl acetate (TA), acetic acid (AA) and (Z)‐3‐hexenyl acetate alone or in combinations. Two septa lures were loaded with either the three‐component sex pheromone blend for G. molesta alone or in combination with codlemone (2‐PH), the sex pheromone of Cydia pomonella (L). A third septum lure included the combination sex pheromone blend plus pear ester, (E,Z)‐2,4‐ethyl decadienoate (2‐PH/PE), and a fourth septum was loaded with only β‐ocimene. Results were consistent across geographical areas showing that the addition of β‐ocimene or (Z)‐3‐hexenyl acetate did not increase moth catches. The addition of pear ester to the sex pheromone lure marginally increased moth catches. The use of TA and AA together significantly increased moth catches compared with the use of only one of the two components. Traps with the TA/AA lure outperformed the Ajar trap baited with a liquid TA plus sugar bait. The emission rate of AA was not a significant factor affecting the performance of the TA/AA lure. The addition of TA/AA significantly increased moth catches when combined with the 2‐PH lure. The TA/AA lure also allowed traps to catch both sexes. Catch of C. pomonella with the 2‐PH lure was comparable to the use of codlemone; however, moth catch was significantly reduced with the 2‐PH/PE lure. Optimization of these complex lures can likely further improve managers’ ability to monitor G. molesta and help to develop multispecies tortricid lures for use in individual traps.
Anastrepha fraterculus (Wiedemann, 1830) is the main pest of fruit in southern Brazil. The use of toxic baits is one of the alternatives for its management. In this study, the toxic baits Anamed + malathion (10,000 mg/liter), Flyral 1.25% + malathion (2,000 mg/liter), and Gelsura (alpha-cypermethrin, 2,000 and 4,000 mg/liter) were highly toxic to the adults of A. fraterculus (lethal time [LT50] < 7 h). In contrast, Success 0.02 CB had an LT50 of 48.4 h. In the absence of rain, all the formulations had residual effects (>90% mortality) on A. fraterculus adults up to 21 d after treatment (DAT). In the presence of 5, 25, and 50 mm of rainfall, there was a significant reduction in the residual effect over time. However, with up to 50 mm of rain, Anamed + malathion and Gelsura 2,000 and 4,000 mg/liter caused between 43.0 and 79.0% of mortality. In the field, during two consecutive seasons (2015/2016 and 2016/2017), applications of Gelsura 2,000 mg/liter (four applications/season) caused population suppression of the pest throughout the apple fruiting period. However, in the 2016/2017 season, in the area using Gelsura, a higher percentage (≈12%) of apple fruits damaged by A. fraterculus females was observed when compared with the area with insecticide application (damage <3%). The toxic bait Gelsura (2,000 and 4.000 mg/liter) was shown to be promising for use in the management of A. fraterculus, with results similar to those with the application of synthetic insecticides.
The efficacy and non-target arthropod effects of transgenic DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 Bt cotton, expressing proteins Cry1Ac, Cry1F and Vip3Aa19, was examined through field trials in Brazil. Fifteen field efficacy experiments were conducted from 2014 through the 2020 growing season across six different states in Brazil to evaluate performance against key lepidopteran pests through artificial infestations of Chrysodeixis includens (Walker), Spodoptera frugiperda (J.E. Smith,1797), Spodoptera cosmioides (Walker, 1858) and Chloridea virescens (F., 1781), and natural infestations of Alabama argillacea (Hübner) and S. frugiperda. The impact of this Bt cotton technology on the non-target arthropod community in Brazilian cotton production systems was also assessed in a multi-site experiment. DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton significantly reduced the feeding damage caused by S. frugiperda, S. cosmioides, C. includens, C. virescens and A. argillacea, causing high levels of mortality (greater than 99%) to all target lepidopteran pests evaluated during vegetative and/or reproductive stages of crop development. Non-target arthropod community-level analyses confirmed no unintended effects on the arthropod groups monitored. These results demonstrate the value of transgenic Bt cotton containing event DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 for consideration as part of an integrated approach for managing key lepidopteran pests in Brazilian cotton production systems.
Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição 4.0 Internacional (CC BY 4.0). O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade s ão de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.