The Arabidopsis genome contains a family of v-SNAREs: VTI11 , VTI12 , and VTI13 . Only VTI11 and VTI12 are expressed at appreciable levels. Although these two proteins are 60% identical, they complement different transport pathways when expressed in the yeast vti1 mutant. VTI11 was identified recently as the mutated gene in the shoot gravitropic mutant zig . Here, we show that the vti11 zig mutant has defects in vascular patterning and auxin transport. An Arabidopsis T-DNA insertion mutant, vti12 , had a normal phenotype under nutrient-rich growth conditions. However, under nutrient-poor conditions, vti12 showed an accelerated senescence phenotype, suggesting that VTI12 may play a role in the plant autophagy pathway. VTI11 and VTI12 also were able to substitute for each other in their respective SNARE complexes, and a doublemutant cross between zig and vti12 was embryo lethal. These results suggest that some VTI1 protein was necessary for plant viability and that the two proteins were partially functionally redundant.
The protein storage vacuole (PSV) is a plant-specific organelle that accumulates reserve proteins, one of the main agricultural products obtained from crops. Despite the importance of this process, the cellular machinery required for transport and accumulation of storage proteins remains largely unknown. Interfering with transport to PSVs has been shown to result in secretion of cargo. Therefore, secretion of a suitable marker could be used as an assay to identify mutants in this pathway. CLV3, a negative regulator of shoot stem cell proliferation, is an extracellular ligand that is rendered inactive when targeted to vacuoles. We devised an assay where trafficking mutants secrete engineered vacuolar CLV3 and show reduced meristems, a phenotype easily detected by visual inspection of plants. We tested this scheme in plants expressing VAC2, a fusion of CLV3 to the vacuolar sorting signal from the storage protein barley lectin. In this way, we determined that trafficking of VAC2 requires the SNARE VTI12 but not its close homologue, the conditionally redundant VTI11 protein. Furthermore, a vti12 mutant is specifically altered in transport of storage proteins, whereas a vti11 mutant is affected in transport of a lytic vacuole marker. These results demonstrate the specialization of VTI12 and VTI11 in mediating trafficking to storage and lytic vacuoles, respectively. Moreover, they validate the VAC2 secretion assay as a simple method to isolate genes that mediate trafficking to the PSV.protein storage vacuole ͉ protein trafficking ͉ SNARE
Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast function and is essential for the photoautotrophic life-style of plants. Three retrograde signals have been described, but little is known of their signaling pathways. We show here that GUN1, a chloroplast-localized pentatricopeptide-repeat protein, and ABI4, an Apetala 2 (AP2)–type transcription factor, are common to all three pathways. ABI4 binds the promoter of a retrograde-regulated gene through a conserved motif found in close proximity to a light-regulatory element. We propose a model in which multiple indicators of aberrant plastid function in
Arabidopsis
are integrated upstream of GUN1 within plastids, which leads to ABI4-mediated repression of nuclear-encoded genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.