A diverse T cell repertoire is essential for a vigorous immune response to new infections, and decreasing repertoire diversity has been implicated in the age-associated decline in CD8 T cell immunity. In this study, using the well-characterized mouse infl uenza virus model, we show that although comparable numbers of CD8 T cells are elicited in the lung and lung airways of young and aged mice after de novo infection, a majority of aged mice exhibit profound shifts in epitope immunodominance and restricted diversity in the TCR repertoire of responding cells. A preferential decline in reactivity to viral epitopes with a low naive precursor frequency was observed, in some cases leading to " holes " in the T cell repertoire. These effects were also seen in young thymectomized mice, consistent with the role of the thymus in maintaining naive repertoire diversity. Furthermore, a decline in repertoire diversity generally correlated with impaired responses to heterosubtypic challenge. This study formally demonstrates in a mouse infection model that naturally occurring contraction of the naive T cell repertoire can result in impaired CD8 T cell responses to known immunodominant epitopes and decline in heterosubtypic immunity. These observations have important implications for the design of vaccine strategies for the elderly.
Intranasal infection of mice with the murine γ-herpesvirus MHV-68 results in an acute lytic infection in the lung, followed by the establishment of lifelong latency. Development of an infectious mononucleosis-like syndrome correlates with the establishment of latency and is characterized by splenomegaly and the appearance of activated CD8+ T cells in the peripheral blood. Interestingly, a large population of activated CD8+ T cells in the peripheral blood expresses the Vβ4+ element in their TCR. In this report we show that MHV-68 latency in the spleen after intranasal infection is harbored in three APC types: B cells, macrophages, and dendritic cells. Surprisingly, since latency has not previously been described in dendritic cells, these cells harbored the highest frequency of latent virus. Among B cells, latency was preferentially associated with activated B cells expressing the phenotype of germinal center B cells, thus formally linking the previously reported association of latency gene expression and germinal centers to germinal center B cells. Germinal center formation, however, was not required for the establishment of latency. Significantly, although three cell types were latently infected, the ability to stimulate Vβ4+CD8+ T cell hybridomas was limited to latently infected, activated B cells.
Lymphocyte activation gene-3 (LAG-3) is a CD4-related, activation-induced cell surface molecule that binds to MHC class II with high affinity. In this study, we used four experimental systems to reevaluate previous suggestions that LAG-3−/− mice had no T cell defect. First, LAG-3−/− T cells exhibited a delay in cell cycle arrest following in vivo stimulation with the superantigen staphylococcal enterotoxin B resulting in increased T cell expansion and splenomegaly. Second, increased T cell expansion was also observed in adoptive recipients of LAG-3−/− OT-II TCR transgenic T cells following in vivo Ag stimulation. Third, infection of LAG-3−/− mice with Sendai virus resulted in increased numbers of memory CD4+ and CD8+ T cells. Fourth, CD4+ T cells exhibited a delayed expansion in LAG-3−/− mice infected with murine gammaherpesvirus. In summary, these data suggest that LAG-3 negatively regulates T cell expansion and controls the size of the memory T cell pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.