Experimenters in toxicology often compare the concentration-response relationship between two distinct populations using the median lethal concentration (LC50). This comparison is sometimes done by calculating the 95% confidence interval for the LC50 for each population, concluding that no significant difference exists if the two confidence intervals overlap. A more appropriate test compares the ratio of the LC50s to 1 or the log(LC50 ratio) to 0. In this ratio test, we conclude that no difference exists in LC50s if the confidence interval for the ratio of the LC50s contains 1 or the confidence interval for the log(LC50 ratio) contains 0. A Monte Carlo simulation study was conducted to compare the confidence interval overlap test to the ratio test. The confidence interval overlap test performs substantially below the nominal alpha = 0.05 level, closer to p = 0.005; therefore, it has considerably less power for detecting true differences compared to the ratio test. The ratio-based method exhibited better type I error rates and superior power properties in comparison to the confidence interval overlap test. Thus, a ratio-based statistical procedure is preferred to using simple overlap of two independently derived confidence intervals.
Model averaging (MA) has been proposed as a method of accounting for model uncertainty in benchmark dose (BMD) estimation. The technique has been used to average BMD dose estimates derived from dichotomous dose-response experiments, microbial dose-response experiments, as well as observational epidemiological studies. While MA is a promising tool for the risk assessor, a previous study suggested that the simple strategy of averaging individual models' BMD lower limits did not yield interval estimators that met nominal coverage levels in certain situations, and this performance was very sensitive to the underlying model space chosen. We present a different, more computationally intensive, approach in which the BMD is estimated using the average dose-response model and the corresponding benchmark dose lower bound (BMDL) is computed by bootstrapping. This method is illustrated with TiO(2) dose-response rat lung cancer data, and then systematically studied through an extensive Monte Carlo simulation. The results of this study suggest that the MA-BMD, estimated using this technique, performs better, in terms of bias and coverage, than the previous MA methodology. Further, the MA-BMDL achieves nominal coverage in most cases, and is superior to picking the "best fitting model" when estimating the benchmark dose. Although these results show utility of MA for benchmark dose risk estimation, they continue to highlight the importance of choosing an adequate model space as well as proper model fit diagnostics.
Highly sensitive and specific determination of urine survivin appears to provide a simple, noninvasive diagnostic test to identify patients with new or recurrent bladder cancer.
The identification of human inflammatory cells that express inducible nitric oxide synthase and the clarification of the role of inducible nitric oxide synthase in human infectious or inflammatory processes have been elusive. In neutrophilenriched fractions from urine, we demonstrate a 43-fold increase in nitric oxide synthase activity in patients with urinary tract infections compared with that in neutrophilenriched fractions from noninfected controls. Partially purified inducible nitric oxide synthase is primarily membrane associated, calcium independent, and inhibited by arginine analogues with a rank order consistent with that of purified human inducible nitric oxide synthase. Molecular, biochemical, and immunocytochemical evidence unequivocally identifies inducible nitric oxide synthase as the major nitric oxide synthase isoform found in neutrophils isolated from urine during urinary tract infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.