Using molecular dynamics simulations and integral equations (Rogers-Young, Percus-Yevick and hypernetted chain closures) we investigate the thermodynamic of particles interacting with continuous core-softened intermolecular potential. Dynamic properties are also analyzed by the simulations. We show that, for a chosen shape of the potential, the density, at constant pressure, has a maximum for a certain temperature. The line of temperatures of maximum density (TMD) was determined in the pressure-temperature phase diagram. Similarly the diffusion constant at a constant temperature, D, has a maximum at a density ρ max and a minimum at a density ρ min < ρ max .In the pressure-temperature phase-diagram the line of extrema in diffusivity is outside of TMD line. Although in this interparticle potential lacks directionality, this is the same behavior observed in SPC/E water.
Using molecular dynamics simulations we investigate the structure of a system of particles interacting through a continuous core-softened interparticle potential. We found for the translational order parameter t a local maximum at a density rho(t-max) and a local minimum at rho(t-min)>rho(t-max). Between rho(t-max) and rho(t-min), the t parameter anomalously decreases upon increasing pressure. For the orientational order parameter Q(6) a maximum was observed at a density rho(t-max)
We present the results of molecular dynamics simulations of the extended simple point charge model of water to investigate the thermodynamic and dynamic properties of stretched and supercooled water. We locate the liquid-gas spinodal, and confirm that the spinodal pressure increases monotonically with T, supporting thermodynamic scenarios for the phase behavior of supercooled water involving a ''non-reentrant'' spinodal. The dynamics at negative pressure show a minimum in the diffusion constant D when the density is decreased at constant temperature, complementary to the known maximum of D at higher pressures. We locate the loci of minima of D relative to the spinodal, showing that the locus is inside the thermodynamically metastable regions of the phase diagram. These dynamical results reflect the initial enhancement and subsequent breakdown of the tetrahedral structure and of the hydrogen bond network as the density decreases.
We investigate by molecular dynamics simulations a continuous isotropic core-softened potential with attractive well in three dimensions, introduced by Franzese [J. Mol. Liq. 136, 267 (2007)], that displays liquid-liquid coexistence with a critical point and waterlike density anomaly. Besides the thermodynamic anomalies, here we find diffusion and structural anomalies. The anomalies, not observed in the discrete version of this model, occur with the same hierarchy that characterizes water. We discuss the differences in the anomalous behavior of the continuous and the discrete model in the framework of the excess entropy, calculated within the pair correlation approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.