Background:Breast cancer anti-oestrogen resistance 4 (BCAR4) was identified in a search for genes involved in anti-oestrogen resistance in breast cancer. We explored whether BCAR4 is predictive for tamoxifen resistance and prognostic for tumour aggressiveness, and studied its function.Methods:BCAR4 mRNA levels were measured in primary breast tumours, and evaluated for association with progression-free survival (PFS) and clinical benefit in patients with oestrogen receptor (ERα)-positive tumours receiving tamoxifen as first-line monotherapy for advanced disease. In a separate cohort of patients with lymph node-negative, ERα-positive cancer, and not receiving systemic adjuvant therapy, BCAR4 levels were evaluated for association with distant metastasis-free survival (MFS). The function of BCAR4 was studied with immunoblotting and RNA interference in a cell model.Results:Multivariate analyses established high BCAR4 mRNA levels as an independent predictive factor for poor PFS after start of tamoxifen therapy for recurrent disease. High BCAR4 mRNA levels were associated with poor MFS and overall survival, reflecting tumour aggressiveness. In BCAR4-expressing cells, phosphorylation of v-erb-b2 erythroblastic leukaemia viral oncogene homolog (ERBB)2, ERBB3, and their downstream mediators extracellular signal-regulated kinase 1/2 and v-akt murine thymoma viral oncogene homolog (AKT) 1/2, was increased. Selective knockdown of ERBB2 or ERBB3 inhibited proliferation, confirming their role in BCAR4-induced tamoxifen resistance.Conclusion:BCAR4 may have clinical relevance for tumour aggressiveness and tamoxifen resistance. Our cell model suggests that BCAR4-positive breast tumours are driven by ERBB2/ERBB3 signalling. Patients with such tumours may benefit from ERBB-targeted therapy.
Resistance to the antiestrogen tamoxifen remains a major problem in the management of estrogen receptor-positive breast cancer. Knowledge on the resistance mechanisms is needed to develop more effective therapies. Breast cancer antiestrogen resistance 4 (BCAR4) was identified in a functional screen for genes involved in tamoxifen resistance. BCAR4 is expressed in 27% of primary breast tumors. In patients treated with tamoxifen for metastized disease high BCAR4 mRNA levels are associated with reduced clinical benefit and progression-free survival. Regarding tumor aggressiveness high BCAR4 mRNA levels are associated with a shorter metastasis free survival and overall survival. In the present study, we investigated the role of BCAR4 in endocrine resistance. Forced expression of BCAR4 in human ZR-75-1 and MCF7 breast cancer cells resulted in cell proliferation in the absence of estrogen and in the presence of various antiestrogens. Inhibition of estrogen receptor 1 (ESR1) expression with small interfering RNA (siRNA), implied that the BCAR4-induced mechanism of resistance is independent of ESR1. Highly conserved BCAR4 homologues of rhesus monkey, green monkey, and the less conserved common marmoset gene induced tamoxifen-resistant cell proliferation, in contrast to the distant BCAR4 homologues of bovine and rabbit. Injection of BCAR4-expressing ZR-75-1 cells into nude mice resulted in rapidly growing tumors. In silico analysis showed that BCAR4 mRNA is highly expressed in human placenta and oocyte, and absent in other normal tissues. In conclusion, BCAR4 is a strong transforming gene causing estrogen-independent growth and antiestrogen resistance, and induces tumor formation in vivo. Due to its restricted expression, BCAR4 may be a good target for treating antiestrogen-resistant breast cancer.
Background:High BCAR4 and ERBB2 mRNA levels in primary breast cancer associate with tamoxifen resistance and poor patient outcome. We determined whether BCAR4 expression sensitises breast cancer cells to lapatinib, and identifies a subgroup of patients who possibly may benefit from ERBB2-targeted therapies despite having tumours with low ERBB2 expression.Methods:Proliferation assays were applied to determine the effect of BCAR4 expression on lapatinib treatment. Changes in cell signalling were quantified with reverse-phase protein microarrays. Quantitative reverse-transcriptase polymerase chain reaction (RT–PCR) of ERBB2 and BCAR4 was performed in 1418 primary breast cancers. Combined BCAR4 and ERBB2 mRNA levels were evaluated for association with progression-free survival (PFS) in 293 oestrogen receptor-α (ER)-positive patients receiving tamoxifen as first-line monotherapy for recurrent disease.Results:BCAR4 expression strongly sensitised ZR-75-1 and MCF7 breast cancer cells to the combination of lapatinib and antioestrogens. Lapatinib interfered with phosphorylation of ERBB2 and its downstream mediators AKT, FAK, SHC, STAT5, and STAT6. Reverse transcriptase–PCR analysis showed that 27.6% of the breast cancers were positive for BCAR4 and 22% expressed also low levels of ERBB2. The clinical significance of combining BCAR4 and ERBB2 mRNA status was underscored by the finding that the group of patients having BCAR4-positive/ERBB2-low-expressing cancers had a shorter PFS on tamoxifen treatment than the BCAR4-negative group.Conclusion:This study shows that BCAR4 expression identifies a subgroup of ER-positive breast cancer patients without overexpression of ERBB2 who have a poor outcome and might benefit from combined ERBB2-targeted and antioestrogen therapy.
Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. To prevent or treat ischemic diseases, therapeutic neovascularization, the stimulation of tissue vascularization after ischemia, has recently progressed from the bench to the bedside. Strategies include transplantation of angiogenic bone marrow-derived mononuclear cells (BMMNCs) or gene transfer for systemic or local up-regulation of proangiogenic proteins. Clinical studies have demonstrated the safety, feasibility, and efficacy of intracoronary and intramuscular infusion of adult BMMNCs in patients with peripheral arterial disease, acute myocardial infarction, and ischemic cardiomyopathy. 1,2However, despite the excitement surrounding the possible clinical use of BMMNCs, in atherosclerosis, diabetes mellitus, and other risk factors for cardiovascular diseases the availability of bone marrow and progenitor cells is reduced and their function impaired to varying degrees.1,2 Moreover, the safety of BMMNCs treatment has been questioned by studies that found an increase in atherosclerotic plaque size after BMMNCs treatment. 3This potentially hazardous dual effect of therapeutic neovascularization on atherogenesis is explained by the many common pathways of both mechanisms and has been named the Janus phenomenon.
Previously, we have identified a panel of breast cancer antiestrogen resistance (BCAR) genes. Several of these genes have clinical relevance because mRNA or protein levels associate with tamoxifen resistance or tumor aggressiveness. We postulated that changes in activation status of protein signaling networks induced by BCAR genes may provide better insight into the mechanisms underlying antiestrogen resistance. Key signal transduction pathways were analyzed for changes in activation or expression using reverse-phase protein microarrays probed with 78 antibodies against signaling proteins with known roles in tumorigenesis. We used ZR-75-1-derived cell lines transduced with AKT1, AKT2, BCAR1, BCAR3, BCAR4, EGFR, GRB7, HRAS, HRAS v12 or HEF1 and MCF7-derived cell lines transduced with BCAR3, BCAR4 or EGFR. In the antiestrogenresistant cell lines, we observed increased phosphorylation of several pathways involved in cell proliferation and survival. All tamoxifen-resistant cell lines contained high levels of phosphorylated AKT and its biochemically linked substrates Forkhead box O1/3. The activation of ERBB2, ERBB3 and the downstream modulators focal adhesion kinase and SHC were activated in cells with overexpression of BCAR4. Remarkable differences were observed for the levels of activated AMPK alpha1, cyclins, STAT5, STAT6, ERK1/2 and BCL2. The comparison of the cell signaling networks in estrogen-dependent and -independent cell lines revealed biochemically linked kinase-substrate markers that comprised systemically activated signaling pathways involved in tamoxifen resistance. Our results show that this model provides insights into the molecular and cellular mechanisms of breast cancer progression and antiestrogen resistance. This knowledge may help the development of novel targeted treatments.Breast cancers are initially dependent on estrogens for growth and progression. Antiestrogens prevent estrogens from binding the estrogen receptor (ER) alpha and thereby inhibit cell proliferation. ERa is expressed in about two-thirds of primary breast cancers. For over 30 years, the estrogen antagonist tamoxifen has been the preferred endocrine treatment for patients with ERa-positive breast cancer in premenopausal and postmenopausal women. 1 Tamoxifen is effective in the treatment of metastatic breast cancer, ductal carcinoma in situ, as adjuvant therapy, and more recently in chemoprevention of the malignancy. 2,3 In patients with breast cancer with recurrent disease, tamoxifen induces an objective response in approximately more than half of the patients with primary cancers expressing the ER 4 and references herein. However, the treatment is palliative, and progression of the tumor cells to a hormone-independent phenotype is inevitable. Several mechanisms have been identified underlying primary endocrine resistance of breast cancer and the progression to acquired resistance. The most favored explanations for mechanisms causing tamoxifen resistance are based on pharmacology of the drug; alterations in the interactions bet...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.