Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region.
Fidelity of individual animals to breeding sites is a primary determinant of population structure. The degree and scale of philopatry in a population reflect the fitness effects of social facilitation, ecological adaptation and optimal inbreeding. Patterns of breeding-site movement and fidelity are functions of social structure and are frequently sex biased. We report on a female humpback whale ( Megaptera novaeangliae ) first identified by natural markings off Brazil that subsequently was photographed off Madagascar. The minimum travel distance between these locations is greater than 9800 km, approximately 4000 km longer than any previously reported movement between breeding grounds, more than twice the species' typical seasonal migratory distance and the longest documented movement by a mammal. It is unexpected to find this exceptional long-distance movement between breeding groups by a female, as models of philopatry suggest that male mammals move more frequently or over longer distances in search of mating opportunities. While such movement may be advantageous, especially in changeable or unpredictable circumstances, it is not possible to unambiguously ascribe causality to this rare observation. This finding illustrates the behavioural flexibility in movement patterns that may be demonstrated within a typically philopatric species.
The potential impact of increasing vessel traffic and coastal development has led to concerns regarding the future of the Brazilian humpback whale Megaptera novaeangliae population. Our objective was to monitor humpback whale abundance in the Brazilian coastal breeding grounds in order to provide information to support future conservation strategies for this species. To this end, a 4 yr series (2002 to 2005) of aerial surveys was implemented. Abundance was estimated using standard line-transect methods. Data were analyzed using the software DISTANCE 5.0. Perpendicular sighting data were modeled using (1) the uniform function with cosine and simple polynomial adjustments, (2) the half-normal function with cosine, and (3) the hazard-rate function with cosine and a simple polynomial series expansion. The model that best fitted the data was selected according to Akaike's Information Criterion (AIC). We estimated the population off the Brazilian coast to be 6404 (CV = 0.11) ind. in 2005. Alternative scenarios are presented to permit the discussion of results obtained from different g (0) corrections (where g (0) is the probability of detecting an animal at distance 0). We confirmed what previous studies have shown, i.e. that the studied population is increasing, and it is expected that new areas will be occupied and conflicts of interests will arise. The results of this study support the Brazilian government's stance against whaling and should be used in national and international debate to help solve conflicts of interest and to find non-lethal solutions.
In the Southwestern Atlantic Ocean, humpback whales migrate every winter to the Brazilian coast for breeding and calving in the Abrolhos Bank. This breeding stock represents the remnants of a larger population heavily exploited during the beginning of the 20th century. Despite its relevance to conservation efforts, the degree of current genetic variation and the migratory relationship with Antarctic feeding areas for this population are still largely unknown. To examine these questions, we sequenced *400 bp of the mitochondrial DNA control region from samples taken off the Brazilian coast (n = 171) and near the Antarctic Peninsula (n = 77). The genetic variability of the Brazilian humpback whale breeding population was high and similar to that found in other Southern Hemisphere breeding grounds. Phylogenetic analysis suggested the existence of a new mitochondrial clade that exists at low frequency among Southern Hemisphere populations.Direct comparison between the Brazilian and the Colombia breeding populations and the Antarctic Peninsula feeding population showed no genetic differentiation between this feeding region and the Colombian breeding area or between feeding Areas I and II near the Antarctic Peninsula. In contrast, these populations were genetically distinct from the Brazilian population. Two humpback whales sampled off South Georgia Islands, in the Scotia Sea, shared identical haplotypes to whales from Brazil. Our results, supported by photo-identification and satellite telemetry data, suggest that the main feeding area of the Southern Hemisphere humpback whale population is likely to be located near the South Georgia/South Sandwich Islands area and not in the Antarctic Peninsula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.