Cornelia de Lange syndrome is a multisystemic developmental disorder mainly related to de novo heterozygous NIPBL mutation. Recently, NIPBL somatic mosaicism has been highlighted through buccal cell DNA study in some patients with a negative molecular analysis on leukocyte DNA. Here, we present a series of 38 patients with a Cornelia de Lange syndrome related to a heterozygous NIPBL mutation identified by Sanger sequencing. The diagnosis was based on the following criteria: (i) intrauterine growth retardation and postnatal short stature, (ii) feeding difficulties and/or gastro-oesophageal reflux, (iii) microcephaly, (iv) intellectual disability, and (v) characteristic facial features. We identified 37 novel NIPBL mutations including 34 in leukocytes and 3 in buccal cells only. All mutations shown to have arisen de novo when parent blood samples were available. The present series confirms the difficulty in predicting the phenotype according to the NIPBL mutation. Until now, somatic mosaicism has been observed for 20 cases which do not seem to be consistently associated with a milder phenotype. Besides, several reports support a postzygotic event for those cases. Considering these elements, we recommend a first-line buccal cell DNA analysis in order to improve gene testing sensitivity in Cornelia de Lange syndrome and genetic counselling.
Fe20Ni80@Au core–shell nanoparticles have been prepared by a multi-step microemulsion technique and the influence of annealing from 200 to 500 °C on the particles’ size, morphology and magnetic properties is reported. After annealing under dilute H2 at 300 °C and above, FeNi3-structured Permalloy nanoparticles were observed in the XRD patterns with a lattice parameter of a = 3.560(2) Å. The sizes of the nanocomposites increased non-linearly with increasing annealing temperature, accompanied by a decrease in the expansive strain in the shells and cores. The samples were found to exhibit superparamagnetic behaviour with a ferromagnetic component that became dominant at high annealing temperatures due to an increase in the average particle diameter over the critical radius required for superparamagnetic behaviour. The saturation magnetization (MS) of the samples taken at 300 K increased from 19 emu g−1 for the as-prepared sample to 100 emu g−1 for the sample annealed at 500 °C.
Advances in medical technology rely heavily on the collection and analysis of measured data to facilitate patient diagnosis and business decisions. The healthcare industry, particularly pharmaceuticals and diagnostic processes, has an ongoing need to improve item tracking and data collection to improve the quality of care while reducing cost. The remote, non-invasive characteristics of radio frequency identification (RFID) can facilitate the information needs of healthcare without imposing additional burden onto the patient or the staff. Properly deployed RFID enabled devices can provide convenient and accurate data for disease diagnosis, evaluation of prescription noncompliance, and identification of medication dosage errors. This paper describes an overview of the concept of an all-encompassing RFID pharmaceutical tracking system that begins with compliance documentation from the drug manufacturer and continues through the confirmation of patient compliance by capsule extraction from the bottle into a pill case and ultimately ingested or inserted into the body. This system also facilitates compliance with Food and Drug Administration proposed e-pedigree requirements and provides data for healthcare decision making. An introduction to healthcare trends is provided in order to communicate the need for such a biocompatible RFID pharmaceutical tracking system. Also presented in this paper is the overall scope of research and in vitro test method to develop biocompatible RFID tag components for use in a “pharmaceutical supply chain system” beginning with the manufacturer, continuing through distribution, and ending at the point of interest within the patient’s body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.