Detection of Alzheimer's Disease (AD) from neuroimaging data such as MRI through machine learning have been a subject of intense research in recent years. Recent success of deep learning in computer vision have progressed such research further. However, common limitations with such algorithms are reliance on a large number of training images, and requirement of careful optimization of the architecture of deep networks. In this paper, we attempt solving these issues with transfer learning, where state-of-the-art architectures such as VGG and Inception are initialized with pre-trained weights from large benchmark datasets consisting of natural images, and the fully-connected layer is re-trained with only a small number of MRI images. We employ image entropy to select the most informative slices for training. Through experimentation on the OASIS MRI dataset, we show that with training size almost 10 times smaller than the state-of-the-art, we reach comparable or even better performance than current deep-learning based methods.
Detection of Alzheimer's disease (AD) from neuroimaging data such as MRI through machine learning has been a subject of intense research in recent years. The recent success of deep learning in computer vision has progressed such research. However, common limitations with such algorithms are reliance on a large number of training images, and the requirement of careful optimization of the architecture of deep networks. In this paper, we attempt solving these issues with transfer learning, where the state-ofthe-art VGG architecture is initialized with pre-trained weights from large benchmark datasets consisting of natural images. The network is then fine-tuned with layer-wise tuning, where only a pre-defined group of layers are trained on MRI images. To shrink the training data size, we employ image entropy to select the most informative slices. Through experimentation on the ADNI dataset, we show that with the training size of 10 to 20 times smaller than the other contemporary methods, we reach the state-of-the-art performance in AD vs. NC, AD vs. MCI, and MCI vs. NC classification problems, with a 4% and a 7% increase in accuracy over the state-of-the-art for AD vs. MCI and MCI vs. NC, respectively. We also provide a detailed analysis of the effect of the intelligent training data selection method, changing the training size, and changing the number of layers to be fine-tuned. Finally, we provide class activation maps (CAM) that demonstrate how the proposed model focuses on discriminative image regions that are neuropathologically relevant and can help the healthcare practitioner in interpreting the model's decision-making process. INDEX TERMS Deep learning, transfer learning, convolutional neural network, Alzheimer's.
Investigations of mental illness have been enriched by the advent and maturation of neuroimaging technologies and the rapid pace and increased affordability of molecular sequencing techniques, however, the increased volume, variety and velocity of research data, presents a considerable technical and analytic challenge to curate, federate and interpret. Aggregation of high-dimensional datasets across brain disorders can increase sample sizes and may help identify underlying causes of brain dysfunction, however, additional barriers exist for effective data harmonization and integration for their combined use in research. To help realize the potential of multi-modal data integration for the study of mental illness, the Centre for Addiction and Mental Health (CAMH) constructed a centralized data capture, visualization and analytics environment—the CAMH Neuroinformatics Platform—based on the Ontario Brain Institute (OBI) Brain-CODE architecture, towards the curation of a standardized, consolidated psychiatric hospital-wide research dataset, directly coupled to high performance computing resources.
In this paper, we highlight three issues that limit performance of machine learning on biomedical images, and tackle them through 3 case studies: 1) Interactive Machine Learning (IML): we show how IML can drastically improve exploration time and quality of direct volume rendering. 2) transfer learning: we show how transfer learning along with intelligent pre-processing can result in better Alzheimer's diagnosis using a much smaller training set 3) data imbalance: we show how our novel focal Tversky loss function can provide better segmentation results taking into account the imbalanced nature of segmentation datasets. The case studies are accompanied by in-depth analytical discussion of results with possible future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.